Cargando…

A gene-editing/complementation strategy for tissue-specific lignin reduction while preserving biomass yield

BACKGROUND: Lignification of secondary cell walls is a major factor conferring recalcitrance of lignocellulosic biomass to deconstruction for fuels and chemicals. Genetic modification can reduce lignin content and enhance saccharification efficiency, but usually at the cost of moderate-to-severe gro...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Hasi, Liu, Chang, Dixon, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417962/
https://www.ncbi.nlm.nih.gov/pubmed/34479620
http://dx.doi.org/10.1186/s13068-021-02026-5
Descripción
Sumario:BACKGROUND: Lignification of secondary cell walls is a major factor conferring recalcitrance of lignocellulosic biomass to deconstruction for fuels and chemicals. Genetic modification can reduce lignin content and enhance saccharification efficiency, but usually at the cost of moderate-to-severe growth penalties. We have developed a method, using a single DNA construct that uses CRISPR–Cas9 gene editing to knock-out expression of an endogenous gene of lignin monomer biosynthesis while at the same time expressing a modified version of the gene’s open reading frame that escapes cutting by the Cas9 system and complements the introduced mutation in a tissue-specific manner. RESULTS: Expressing the complementing open reading frame in vessels allows for the regeneration of Arabidopsis plants with reduced lignin, wild-type biomass yield, and up to fourfold enhancement of cell wall sugar yield per plant. The above phenotypes are seen in both homozygous and bi-allelic heterozygous T1 lines, and are stable over at least four generations. CONCLUSIONS: The method provides a rapid approach for generating reduced lignin trees or crops with one single transformation event, and, paired with a range of tissue-specific promoters, provides a general strategy for optimizing loss-of-function traits that are associated with growth penalties. This method should be applicable to any plant species in which transformation and gene editing are feasible and validated vessel-specific promoters are available. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-021-02026-5.