Cargando…
Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network
BACKGROUND: We aimed to construct an artificial intelligence (AI) guided identification of suspicious bone metastatic lesions from the whole-body bone scintigraphy (WBS) images by convolutional neural networks (CNNs). METHODS: We retrospectively collected the (99m)Tc-MDP WBS images with confirmed bo...
Autores principales: | Liu, Yemei, Yang, Pei, Pi, Yong, Jiang, Lisha, Zhong, Xiao, Cheng, Junjun, Xiang, Yongzhao, Wei, Jianan, Li, Lin, Yi, Zhang, Cai, Huawei, Zhao, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417997/ https://www.ncbi.nlm.nih.gov/pubmed/34481459 http://dx.doi.org/10.1186/s12880-021-00662-9 |
Ejemplares similares
-
Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis
por: Zhao, Zhen, et al.
Publicado: (2020) -
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study
por: Yang, Pei, et al.
Publicado: (2021) -
Validity of negative bone biopsy in suspicious bone
lesions
por: Lange, Mine B, et al.
Publicado: (2021) -
Efficient Bone Metastasis Diagnosis in Bone Scintigraphy Using a Fast Convolutional Neural Network Architecture
por: Papandrianos, Nikolaos, et al.
Publicado: (2020) -
Bone Scintigraphy
por: Galasko, D.
Publicado: (1982)