Cargando…
Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418127/ https://www.ncbi.nlm.nih.gov/pubmed/34490002 http://dx.doi.org/10.3389/fpls.2021.697318 |
_version_ | 1783748520471166976 |
---|---|
author | Bharadwaj, Revuru Kumar, Sarma R. Sharma, Ashutosh Sathishkumar, Ramalingam |
author_facet | Bharadwaj, Revuru Kumar, Sarma R. Sharma, Ashutosh Sathishkumar, Ramalingam |
author_sort | Bharadwaj, Revuru |
collection | PubMed |
description | Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites. |
format | Online Article Text |
id | pubmed-8418127 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84181272021-09-05 Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology Bharadwaj, Revuru Kumar, Sarma R. Sharma, Ashutosh Sathishkumar, Ramalingam Front Plant Sci Plant Science Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites. Frontiers Media S.A. 2021-08-13 /pmc/articles/PMC8418127/ /pubmed/34490002 http://dx.doi.org/10.3389/fpls.2021.697318 Text en Copyright © 2021 Bharadwaj, Kumar, Sharma and Sathishkumar. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Bharadwaj, Revuru Kumar, Sarma R. Sharma, Ashutosh Sathishkumar, Ramalingam Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology |
title | Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology |
title_full | Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology |
title_fullStr | Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology |
title_full_unstemmed | Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology |
title_short | Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology |
title_sort | plant metabolic gene clusters: evolution, organization, and their applications in synthetic biology |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418127/ https://www.ncbi.nlm.nih.gov/pubmed/34490002 http://dx.doi.org/10.3389/fpls.2021.697318 |
work_keys_str_mv | AT bharadwajrevuru plantmetabolicgeneclustersevolutionorganizationandtheirapplicationsinsyntheticbiology AT kumarsarmar plantmetabolicgeneclustersevolutionorganizationandtheirapplicationsinsyntheticbiology AT sharmaashutosh plantmetabolicgeneclustersevolutionorganizationandtheirapplicationsinsyntheticbiology AT sathishkumarramalingam plantmetabolicgeneclustersevolutionorganizationandtheirapplicationsinsyntheticbiology |