Cargando…
Text-Graph Enhanced Knowledge Graph Representation Learning
Knowledge Graphs (KGs) such as Freebase and YAGO have been widely adopted in a variety of NLP tasks. Representation learning of Knowledge Graphs (KGs) aims to map entities and relationships into a continuous low-dimensional vector space. Conventional KG embedding methods (such as TransE and ConvE) u...
Autores principales: | Hu, Linmei, Zhang, Mengmei, Li, Shaohua, Shi, Jinghan, Shi, Chuan, Yang, Cheng, Liu, Zhiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418144/ https://www.ncbi.nlm.nih.gov/pubmed/34490421 http://dx.doi.org/10.3389/frai.2021.697856 |
Ejemplares similares
-
Fusion of text and graph information for machine learning problems on networks
por: Makarov, Ilya, et al.
Publicado: (2021) -
Persona2vec: a flexible multi-role representations learning framework for graphs
por: Yoon, Jisung, et al.
Publicado: (2021) -
Semantic-visual shared knowledge graph for zero-shot learning
por: Yu, Beibei, et al.
Publicado: (2023) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Learning and reasoning with graph data
por: Jaeger, Manfred
Publicado: (2023)