Cargando…

The Effect of Verapamil on TXNIP Gene Expression, GLP1R mRNA, FBS, HbA1c, and Lipid Profile in T2DM Patients Receiving Metformin and Sitagliptin

INTRODUCTION: Type 2 diabetes mellitus (T2DM) is the most common type of diabetes. A decrease in the number of pancreatic beta cells is a pathological sign of diabetes, and to date there is no drug treatment that targets damage to these cells. Pancreatic beta cells have a weak antioxidant system and...

Descripción completa

Detalles Bibliográficos
Autores principales: Malayeri, Alireza, Zakerkish, Mehrnoosh, Ramesh, Farrokh, Galehdari, Hamid, Hemmati, Ali Asghar, Angali, Kambiz A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Healthcare 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418290/
https://www.ncbi.nlm.nih.gov/pubmed/34480721
http://dx.doi.org/10.1007/s13300-021-01145-4
Descripción
Sumario:INTRODUCTION: Type 2 diabetes mellitus (T2DM) is the most common type of diabetes. A decrease in the number of pancreatic beta cells is a pathological sign of diabetes, and to date there is no drug treatment that targets damage to these cells. Pancreatic beta cells have a weak antioxidant system and are highly sensitive to oxidative stress reactions that occur within cells. Thioredoxin interacting protein (TXNIP) inhibits thioredoxin, which is part of the intracellular antioxidant system, thereby accelerating oxidative stress and apoptosis of pancreatic beta cells. Verapamil is a non-dihydropyridine calcium channel blocker. The efficacy of this drug to improve beta cell survival and glucose homeostasis by inhibiting TXNIP expression has been demonstrated in in vitro studies. Although several retrospective studies have shown a lower incidence of T2DM with verapamil treatment, no prospective intervention studies have determined the efficacy of this drug in patients with T2DM. METHODS: The aim of this randomized, double-blind, placebo-controlled study was to evaluate the efficacy and safety of oral verapamil administration in T2DM patients. In this 90-day study, the effects of verapamil on fasting blood sugar (FBS), hemoglobin A1C (HbA1c), and the lipid profile were evaluated and compared with those of the placebo. RESULTS: There was a significant decrease in HbA1c (about 0.5%) in the verapamil group at the end of the intervention period. The effects of verapamil on TXNIP gene expression and glucagon-like peptide-1 receptor (GLP1R) mRNA were compared with those of the placebo (at baseline, after 15 and 30 days, and at the end of the study). During the first month of the study, decreased TXNIP gene expression and increased GLP1R mRNA were associated with the administration of verapamil when compared with the placebo, although the differences were not significant. CONCLUSION: Verapamil can lead to better control of T2DM by reducing TXNIP gene expression and increasing beta cell survival and, possibly, by other mechanisms. CLINICAL TRIAL REGISTRATION: IRCT registration no.: IRCT20180417039339N1 (https://www.IRCT.ir).