Cargando…
Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients
BACKGROUND: Examining tumor KRAS/NRAS/BRAF/PIK3CA status in metastatic colorectal cancer (mCRC) is essential for treatment selection and prognosis evaluation. Cell‐free DNA (cfDNA) in plasma is a feasible source for tumor gene analysis. METHODS: In this study, we recruited mCRC patients and analyzed...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418479/ https://www.ncbi.nlm.nih.gov/pubmed/34403504 http://dx.doi.org/10.1002/jcla.23818 |
_version_ | 1783748578058960896 |
---|---|
author | Xu, Xiaojing Huang, Fei Cao, Minlu Chen, Xinning Wang, Hao Jiang, Huiqin Yu, Yiyi Shen, Minna Yang, Yihui Wang, Beili Liu, Tianshu Guo, Wei |
author_facet | Xu, Xiaojing Huang, Fei Cao, Minlu Chen, Xinning Wang, Hao Jiang, Huiqin Yu, Yiyi Shen, Minna Yang, Yihui Wang, Beili Liu, Tianshu Guo, Wei |
author_sort | Xu, Xiaojing |
collection | PubMed |
description | BACKGROUND: Examining tumor KRAS/NRAS/BRAF/PIK3CA status in metastatic colorectal cancer (mCRC) is essential for treatment selection and prognosis evaluation. Cell‐free DNA (cfDNA) in plasma is a feasible source for tumor gene analysis. METHODS: In this study, we recruited mCRC patients and analyzed their KRAS/NRAS/BRAF/PIK3CA status in cfDNA using two platforms, next‐generation sequencing (NGS) and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF). The performance between the two platforms and the concordance rate between cfDNA and tissue were analyzed. The relationship between cfDNA‐related variables and clinical variables was also assessed. Tumor mutations in cfDNA from patients receiving continuous treatments were monitored in the follow‐ups. RESULTS: Next‐generation sequencing and MALDI‐TOF had similar specificity (100.0% vs. 99.3%) and negative predictive value (99.9% vs. 99.4%), whereas NGS had higher sensitivity (97.1% vs. 85.3% of MALDI‐TOF) and positive predictive value (100% vs. 82.9% of MALDI‐TOF). The overall concordance rate of NGS and MALDI‐TOF was 98.6%. For the reportable types of mutations in both cfDNA and tissue, the concordance rate was 96.1%. Among 28 tissue‐positive patients, the allele frequencies of tumor mutations in cfDNA were higher in patients with primary tumor burden (p = 0.0141). Both CEA and CA 19‐9 were positively correlated with cfDNA concentration (r = 0.3278 and r = 0.3992). The allele frequencies of tumor mutations changed with disease progression. CONCLUSIONS: Next‐generation sequencing showed slightly better performance in detecting cfDNA mutations and was more suitable for clinical practice. cfDNA‐related variables reflected the tumor status and showed a promising potential in monitoring disease progression. |
format | Online Article Text |
id | pubmed-8418479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84184792021-09-08 Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients Xu, Xiaojing Huang, Fei Cao, Minlu Chen, Xinning Wang, Hao Jiang, Huiqin Yu, Yiyi Shen, Minna Yang, Yihui Wang, Beili Liu, Tianshu Guo, Wei J Clin Lab Anal Research Articles BACKGROUND: Examining tumor KRAS/NRAS/BRAF/PIK3CA status in metastatic colorectal cancer (mCRC) is essential for treatment selection and prognosis evaluation. Cell‐free DNA (cfDNA) in plasma is a feasible source for tumor gene analysis. METHODS: In this study, we recruited mCRC patients and analyzed their KRAS/NRAS/BRAF/PIK3CA status in cfDNA using two platforms, next‐generation sequencing (NGS) and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF). The performance between the two platforms and the concordance rate between cfDNA and tissue were analyzed. The relationship between cfDNA‐related variables and clinical variables was also assessed. Tumor mutations in cfDNA from patients receiving continuous treatments were monitored in the follow‐ups. RESULTS: Next‐generation sequencing and MALDI‐TOF had similar specificity (100.0% vs. 99.3%) and negative predictive value (99.9% vs. 99.4%), whereas NGS had higher sensitivity (97.1% vs. 85.3% of MALDI‐TOF) and positive predictive value (100% vs. 82.9% of MALDI‐TOF). The overall concordance rate of NGS and MALDI‐TOF was 98.6%. For the reportable types of mutations in both cfDNA and tissue, the concordance rate was 96.1%. Among 28 tissue‐positive patients, the allele frequencies of tumor mutations in cfDNA were higher in patients with primary tumor burden (p = 0.0141). Both CEA and CA 19‐9 were positively correlated with cfDNA concentration (r = 0.3278 and r = 0.3992). The allele frequencies of tumor mutations changed with disease progression. CONCLUSIONS: Next‐generation sequencing showed slightly better performance in detecting cfDNA mutations and was more suitable for clinical practice. cfDNA‐related variables reflected the tumor status and showed a promising potential in monitoring disease progression. John Wiley and Sons Inc. 2021-08-17 /pmc/articles/PMC8418479/ /pubmed/34403504 http://dx.doi.org/10.1002/jcla.23818 Text en © 2021 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Xu, Xiaojing Huang, Fei Cao, Minlu Chen, Xinning Wang, Hao Jiang, Huiqin Yu, Yiyi Shen, Minna Yang, Yihui Wang, Beili Liu, Tianshu Guo, Wei Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients |
title | Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients |
title_full | Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients |
title_fullStr | Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients |
title_full_unstemmed | Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients |
title_short | Cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting KRAS/NRAS/BRAF/PIK3CA mutations in cfDNA from metastatic colorectal cancer patients |
title_sort | cross‐platform comparison of next‐generation sequencing and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for detecting kras/nras/braf/pik3ca mutations in cfdna from metastatic colorectal cancer patients |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418479/ https://www.ncbi.nlm.nih.gov/pubmed/34403504 http://dx.doi.org/10.1002/jcla.23818 |
work_keys_str_mv | AT xuxiaojing crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT huangfei crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT caominlu crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT chenxinning crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT wanghao crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT jianghuiqin crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT yuyiyi crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT shenminna crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT yangyihui crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT wangbeili crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT liutianshu crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients AT guowei crossplatformcomparisonofnextgenerationsequencingandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometryfordetectingkrasnrasbrafpik3camutationsincfdnafrommetastaticcolorectalcancerpatients |