Cargando…
Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep
To investigate single nucleotide polymorphism (SNP) loci associated with yearling wool traits of fine-wool sheep for optimizing marker-assisted selection and dissection of the genetic architecture of wool traits, we conducted a genome-wide association study (GWAS) based on the fixed and random model...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418636/ https://www.ncbi.nlm.nih.gov/pubmed/34255028 http://dx.doi.org/10.1093/jas/skab210 |
_version_ | 1783748602563133440 |
---|---|
author | Zhao, Hongchang Zhu, Shaohua Guo, Tingting Han, Mei Chen, Bowen Qiao, Guoyan Wu, Yi Yuan, Chao Liu, Jianbin Lu, Zengkui Sun, Weibo Wang, Tianxiang Li, Fanwen Zhang, Yajun Hou, Fujun Yue, Yaojing Yang, Bohui |
author_facet | Zhao, Hongchang Zhu, Shaohua Guo, Tingting Han, Mei Chen, Bowen Qiao, Guoyan Wu, Yi Yuan, Chao Liu, Jianbin Lu, Zengkui Sun, Weibo Wang, Tianxiang Li, Fanwen Zhang, Yajun Hou, Fujun Yue, Yaojing Yang, Bohui |
author_sort | Zhao, Hongchang |
collection | PubMed |
description | To investigate single nucleotide polymorphism (SNP) loci associated with yearling wool traits of fine-wool sheep for optimizing marker-assisted selection and dissection of the genetic architecture of wool traits, we conducted a genome-wide association study (GWAS) based on the fixed and random model circulating probability unification (FarmCPU) for yearling staple length (YSL), yearling mean fiber diameter (YFD), yearling greasy fleece weight (YGFW), and yearling clean fleece rate (YCFR) by using the whole-genome re-sequenced data (totaling 577 sheep) from the following four fine-wool sheep breeds in China: Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Qinghai fine-wool sheep (QHS), and Aohan fine-wool sheep (AHS). A total of 16 SNPs were detected above the genome-wise significant threshold (P = 5.45E-09), and 79 SNPs were located above the suggestive significance threshold (P = 5.00E-07) from the GWAS results. For YFD and YGFW traits, 7 and 9 SNPs reached the genome-wise significance thresholds, whereas 10 and 12 SNPs reached the suggestive significance threshold, respectively. For YSL and YCFR traits, none of the SNPs reached the genome-wise significance thresholds, whereas 57 SNPs exceeded the suggestive significance threshold. We recorded 14 genes located at the region of ±50-kb near the genome-wise significant SNPs and 59 genes located at the region of ±50-kb near the suggestive significant SNPs. Meanwhile, we used the Average Information Restricted Maximum likelihood algorithm (AI-REML) in the “HIBLUP” package to estimate the heritability and variance components of the four desired yearling wool traits. The estimated heritability values (h(2)) of YSL, YFD, YGFW, and YCFR were 0.6208, 0.7460, 0.6758, and 0.5559, respectively. We noted that the genetic parameters in this study can be used for fine-wool sheep breeding. The newly detected significant SNPs and the newly identified candidate genes in this study would enhance our understanding of yearling wool formation, and significant SNPs can be applied to genome selection in fine-wool sheep breeding. |
format | Online Article Text |
id | pubmed-8418636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84186362021-09-09 Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep Zhao, Hongchang Zhu, Shaohua Guo, Tingting Han, Mei Chen, Bowen Qiao, Guoyan Wu, Yi Yuan, Chao Liu, Jianbin Lu, Zengkui Sun, Weibo Wang, Tianxiang Li, Fanwen Zhang, Yajun Hou, Fujun Yue, Yaojing Yang, Bohui J Anim Sci Animal Genetics and Genomics To investigate single nucleotide polymorphism (SNP) loci associated with yearling wool traits of fine-wool sheep for optimizing marker-assisted selection and dissection of the genetic architecture of wool traits, we conducted a genome-wide association study (GWAS) based on the fixed and random model circulating probability unification (FarmCPU) for yearling staple length (YSL), yearling mean fiber diameter (YFD), yearling greasy fleece weight (YGFW), and yearling clean fleece rate (YCFR) by using the whole-genome re-sequenced data (totaling 577 sheep) from the following four fine-wool sheep breeds in China: Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Qinghai fine-wool sheep (QHS), and Aohan fine-wool sheep (AHS). A total of 16 SNPs were detected above the genome-wise significant threshold (P = 5.45E-09), and 79 SNPs were located above the suggestive significance threshold (P = 5.00E-07) from the GWAS results. For YFD and YGFW traits, 7 and 9 SNPs reached the genome-wise significance thresholds, whereas 10 and 12 SNPs reached the suggestive significance threshold, respectively. For YSL and YCFR traits, none of the SNPs reached the genome-wise significance thresholds, whereas 57 SNPs exceeded the suggestive significance threshold. We recorded 14 genes located at the region of ±50-kb near the genome-wise significant SNPs and 59 genes located at the region of ±50-kb near the suggestive significant SNPs. Meanwhile, we used the Average Information Restricted Maximum likelihood algorithm (AI-REML) in the “HIBLUP” package to estimate the heritability and variance components of the four desired yearling wool traits. The estimated heritability values (h(2)) of YSL, YFD, YGFW, and YCFR were 0.6208, 0.7460, 0.6758, and 0.5559, respectively. We noted that the genetic parameters in this study can be used for fine-wool sheep breeding. The newly detected significant SNPs and the newly identified candidate genes in this study would enhance our understanding of yearling wool formation, and significant SNPs can be applied to genome selection in fine-wool sheep breeding. Oxford University Press 2021-07-13 /pmc/articles/PMC8418636/ /pubmed/34255028 http://dx.doi.org/10.1093/jas/skab210 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Animal Genetics and Genomics Zhao, Hongchang Zhu, Shaohua Guo, Tingting Han, Mei Chen, Bowen Qiao, Guoyan Wu, Yi Yuan, Chao Liu, Jianbin Lu, Zengkui Sun, Weibo Wang, Tianxiang Li, Fanwen Zhang, Yajun Hou, Fujun Yue, Yaojing Yang, Bohui Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep |
title | Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep |
title_full | Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep |
title_fullStr | Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep |
title_full_unstemmed | Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep |
title_short | Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep |
title_sort | whole-genome re-sequencing association study on yearling wool traits in chinese fine-wool sheep |
topic | Animal Genetics and Genomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418636/ https://www.ncbi.nlm.nih.gov/pubmed/34255028 http://dx.doi.org/10.1093/jas/skab210 |
work_keys_str_mv | AT zhaohongchang wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT zhushaohua wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT guotingting wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT hanmei wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT chenbowen wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT qiaoguoyan wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT wuyi wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT yuanchao wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT liujianbin wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT luzengkui wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT sunweibo wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT wangtianxiang wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT lifanwen wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT zhangyajun wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT houfujun wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT yueyaojing wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep AT yangbohui wholegenomeresequencingassociationstudyonyearlingwooltraitsinchinesefinewoolsheep |