Cargando…
Evaluation of Kidney Histological Images Using Unsupervised Deep Learning
INTRODUCTION: Evaluating histopathology via machine learning has gained research and clinical interest, and the performance of supervised learning tasks has been described in various areas of medicine. Unsupervised learning of histological images has the advantage of reproducibility for labeling; ho...
Autores principales: | Sato, Noriaki, Uchino, Eiichiro, Kojima, Ryosuke, Sakuragi, Minoru, Hiragi, Shusuke, Minamiguchi, Sachiko, Haga, Hironori, Yokoi, Hideki, Yanagita, Motoko, Okuno, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418980/ https://www.ncbi.nlm.nih.gov/pubmed/34514205 http://dx.doi.org/10.1016/j.ekir.2021.06.008 |
Ejemplares similares
-
Association between the size of healthcare facilities and the intensity of hypertension therapy: a cross-sectional comparison of prescription data from insurance claims data
por: Hiragi, Shusuke, et al.
Publicado: (2020) -
Health improvement framework for actionable treatment planning using a surrogate Bayesian model
por: Nakamura, Kazuki, et al.
Publicado: (2021) -
The relationship between cigarette smoking and the tongue microbiome in an East Asian population
por: Sato, Noriaki, et al.
Publicado: (2020) -
Exploring the mechanism of BK polyomavirus-associated nephropathy through consensus gene network approach
por: Sato, Noriaki, et al.
Publicado: (2023) -
Use of proton pump inhibitors and macrolide antibiotics and risk of acute kidney injury: a self-controlled case series study
por: Ikuta, Keiko, et al.
Publicado: (2022)