Cargando…
Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models
Accurate plaque cap thickness quantification and cap stress/strain calculations are of fundamental importance for vulnerable plaque research. To overcome uncertainties due to intravascular ultrasound (IVUS) resolution limitation, IVUS and optical coherence tomography (OCT) coronary plaque image data...
Autores principales: | Lv, Rui, Maehara, Akiko, Matsumura, Mitsuaki, Wang, Liang, Zhang, Caining, Huang, Mengde, Guo, Xiaoya, Samady, Habib, Giddens, Don. P., Zheng, Jie, Mintz, Gary S., Tang, Dalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419245/ https://www.ncbi.nlm.nih.gov/pubmed/34497800 http://dx.doi.org/10.3389/fbioe.2021.713525 |
Ejemplares similares
-
Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study
por: Lv, Rui, et al.
Publicado: (2020) -
Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study
por: Guo, Xiaoya, et al.
Publicado: (2021) -
Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions
por: Lv, Rui, et al.
Publicado: (2023) -
Predicting Coronary Stenosis Progression Using Plaque Fatigue From IVUS-Based Thin-Slice Models: A Machine Learning Random Forest Approach
por: Guo, Xiaoya, et al.
Publicado: (2022) -
Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations
por: Huang, Mengde, et al.
Publicado: (2022)