Cargando…
An Improved CNN Architecture to Diagnose Skin Cancer in Dermoscopic Images Based on Wildebeest Herd Optimization Algorithm
Skin cancer is one of the most common types of cancers that is sometimes difficult for doctors and experts to diagnose. The noninvasive dermatoscopic method is a popular method for observing and diagnosing skin cancer. Because this method is based on ocular inference, the skin cancer diagnosis by th...
Autores principales: | Zhou, Biying, Arandian, Behdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419510/ https://www.ncbi.nlm.nih.gov/pubmed/34497640 http://dx.doi.org/10.1155/2021/7567870 |
Ejemplares similares
-
Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification
por: Nugroho, Erwin Setyo, et al.
Publicado: (2023) -
Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes
por: Lee, Derek E., et al.
Publicado: (2016) -
Malignant catarrhal fever in pastoral Maasai herds caused by wildebeest associated alcelaphine herpesvirus-1: An outbreak report
por: Swai, Emanuel Senyael, et al.
Publicado: (2013) -
A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss
por: Nie, Yali, et al.
Publicado: (2022) -
Henry Gas Solubility Optimization Algorithm based Feature Extraction in Dermoscopic Images Analysis of Skin Cancer
por: Obayya, Marwa, et al.
Publicado: (2023)