Cargando…
Interpretation of Electrocardiogram Heartbeat by CNN and GRU
The diagnosis of electrocardiogram (ECG) is extremely onerous and inefficient, so it is necessary to use a computer-aided diagnosis of ECG signals. However, it is still a challenging problem to design high-accuracy ECG algorithms suitable for the medical field. In this paper, a classification method...
Autores principales: | Yao, Guoliang, Mao, Xiaobo, Li, Nan, Xu, Huaxing, Xu, Xiangyang, Jiao, Yi, Ni, Jinhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421156/ https://www.ncbi.nlm.nih.gov/pubmed/34497664 http://dx.doi.org/10.1155/2021/6534942 |
Ejemplares similares
-
CNN-GRU-AM for Shared Bicycles Demand Forecasting
por: Peng, Yali, et al.
Publicado: (2021) -
Electrocardiogram Heartbeat Classification for Arrhythmias and Myocardial Infarction
por: Pham, Bach-Tung, et al.
Publicado: (2023) -
Spark Analysis Based on the CNN-GRU Model for WEDM Process
por: Liu, Changhong, et al.
Publicado: (2021) -
A Reparameterization Multifeature Fusion CNN for Arrhythmia Heartbeats Classification
por: Zhang, Dengyong, et al.
Publicado: (2022) -
Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations
por: Matonia, Adam, et al.
Publicado: (2020)