Cargando…

High-Resolution Microscopy to Learn the Nuclear Organization of the Living Yeast Cells

The spatial organization of the nucleus is a key determinant in all genome activities. However, the accurate measurement of the nuclear organization is still technically challenging. Here, the technology NucQuant we created previously was utilized to detect the variation of the nuclear organization,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Renjie, Huang, Aiwen, Wang, Yan, Mei, Pengxin, Zhu, He, Chen, Qianqian, Xu, Sankui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421178/
https://www.ncbi.nlm.nih.gov/pubmed/34497652
http://dx.doi.org/10.1155/2021/9951114
Descripción
Sumario:The spatial organization of the nucleus is a key determinant in all genome activities. However, the accurate measurement of the nuclear organization is still technically challenging. Here, the technology NucQuant we created previously was utilized to detect the variation of the nuclear organization, including the heterogeneity of the nuclear geometry, the change of the NPC distribution along different cell cycle stages during interphase, and the organization of the nucleolus. The results confirmed that not only the growth rate and the NPC distribution are influenced by the carbon source; the nuclear shape is also impacted by the carbon source. The nuclei lost their spherical geometry gradually when the cell was cultured from the most to a less favorable carbon source. We also discovered that the nucleolus prefers to locate at the nuclear periphery, which was called the “genes poor region,” especially when the cells entered quiescence. Furthermore, the distribution of the NPC along the different stages during the interphase was analyzed. We proposed that with the growth of the cell, the nucleus would grow from the surface of the NE flanking the nucleolus firstly.