Cargando…
WEClustering: word embeddings based text clustering technique for large datasets
A massive amount of textual data now exists in digital repositories in the form of research articles, news articles, reviews, Wikipedia articles, and books, etc. Text clustering is a fundamental data mining technique to perform categorization, topic extraction, and information retrieval. Textual dat...
Autores principales: | Mehta, Vivek, Bawa, Seema, Singh, Jasmeet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421191/ https://www.ncbi.nlm.nih.gov/pubmed/34777978 http://dx.doi.org/10.1007/s40747-021-00512-9 |
Ejemplares similares
-
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Reproducibility dataset for a large experimental survey on word embeddings and ontology-based methods for word similarity
por: Lastra-Díaz, Juan J., et al.
Publicado: (2019) -
Text embedding techniques for efficient clustering of twitter data
por: Ravi, Jayasree, et al.
Publicado: (2023) -
A Topic Recognition Method of News Text Based on Word Embedding Enhancement
por: Du, Qiming, et al.
Publicado: (2022) -
Impact of word embedding models on text analytics in deep learning environment: a review
por: Asudani, Deepak Suresh, et al.
Publicado: (2023)