Cargando…
Unsupervised domain adaptation based COVID-19 CT infection segmentation network
Automatic segmentation of infection areas in computed tomography (CT) images has proven to be an effective diagnostic approach for COVID-19. However, due to the limited number of pixel-level annotated medical images, accurate segmentation remains a major challenge. In this paper, we propose an unsup...
Autores principales: | Chen, Han, Jiang, Yifan, Loew, Murray, Ko, Hanseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421243/ https://www.ncbi.nlm.nih.gov/pubmed/34764618 http://dx.doi.org/10.1007/s10489-021-02691-x |
Ejemplares similares
-
A teacher–student framework with Fourier Transform augmentation for COVID-19 infection segmentation in CT images
por: Chen, Han, et al.
Publicado: (2023) -
A Boundary-Enhanced Liver Segmentation Network for Multi-Phase CT Images with Unsupervised Domain Adaptation
por: Ananda, Swathi, et al.
Publicado: (2023) -
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models
por: Gómez, Jose L., et al.
Publicado: (2023) -
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
por: Liu, Xiaofeng, et al.
Publicado: (2022) -
Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images
por: Jin, Qiangguo, et al.
Publicado: (2021)