Cargando…
Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the...
Autores principales: | Zhao, Yifan, Cai, Huiyu, Zhang, Zuobai, Tang, Jian, Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421403/ https://www.ncbi.nlm.nih.gov/pubmed/34489404 http://dx.doi.org/10.1038/s41467-021-25534-2 |
Ejemplares similares
-
Publisher Correction: Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
por: Zhao, Yifan, et al.
Publicado: (2021) -
Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings
por: Jin, Kang, et al.
Publicado: (2023) -
Identifying common transcriptome signatures of cancer by interpreting deep learning models
por: Jha, Anupama, et al.
Publicado: (2022) -
Interpretable generative deep learning: an illustration with single cell gene expression data
por: Treppner, Martin, et al.
Publicado: (2022) -
Dependence of Impedance of Embedded Single Cells on Cellular Behaviour
por: Cho, Sungbo, et al.
Publicado: (2008)