Cargando…
AI under great uncertainty: implications and decision strategies for public policy
Decisions where there is not enough information for a well-informed decision due to unidentified consequences, options, or undetermined demarcation of the decision problem are called decisions under great uncertainty. This paper argues that public policy decisions on how and if to implement decision...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421460/ https://www.ncbi.nlm.nih.gov/pubmed/34511737 http://dx.doi.org/10.1007/s00146-021-01263-4 |
_version_ | 1783749087759171584 |
---|---|
author | Nordström, Maria |
author_facet | Nordström, Maria |
author_sort | Nordström, Maria |
collection | PubMed |
description | Decisions where there is not enough information for a well-informed decision due to unidentified consequences, options, or undetermined demarcation of the decision problem are called decisions under great uncertainty. This paper argues that public policy decisions on how and if to implement decision-making processes based on machine learning and AI for public use are such decisions. Decisions on public policy on AI are uncertain due to three features specific to the current landscape of AI, namely (i) the vagueness of the definition of AI, (ii) uncertain outcomes of AI implementations and (iii) pacing problems. Given that many potential applications of AI in the public sector concern functions central to the public sphere, decisions on the implementation of such applications are particularly sensitive. Therefore, it is suggested that public policy-makers and decision-makers in the public sector can adopt strategies from the argumentative approach in decision theory to mitigate the established great uncertainty. In particular, the notions of framing and temporal strategies are considered. |
format | Online Article Text |
id | pubmed-8421460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer London |
record_format | MEDLINE/PubMed |
spelling | pubmed-84214602021-09-07 AI under great uncertainty: implications and decision strategies for public policy Nordström, Maria AI Soc Open Forum Decisions where there is not enough information for a well-informed decision due to unidentified consequences, options, or undetermined demarcation of the decision problem are called decisions under great uncertainty. This paper argues that public policy decisions on how and if to implement decision-making processes based on machine learning and AI for public use are such decisions. Decisions on public policy on AI are uncertain due to three features specific to the current landscape of AI, namely (i) the vagueness of the definition of AI, (ii) uncertain outcomes of AI implementations and (iii) pacing problems. Given that many potential applications of AI in the public sector concern functions central to the public sphere, decisions on the implementation of such applications are particularly sensitive. Therefore, it is suggested that public policy-makers and decision-makers in the public sector can adopt strategies from the argumentative approach in decision theory to mitigate the established great uncertainty. In particular, the notions of framing and temporal strategies are considered. Springer London 2021-09-07 2022 /pmc/articles/PMC8421460/ /pubmed/34511737 http://dx.doi.org/10.1007/s00146-021-01263-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Open Forum Nordström, Maria AI under great uncertainty: implications and decision strategies for public policy |
title | AI under great uncertainty: implications and decision strategies for public policy |
title_full | AI under great uncertainty: implications and decision strategies for public policy |
title_fullStr | AI under great uncertainty: implications and decision strategies for public policy |
title_full_unstemmed | AI under great uncertainty: implications and decision strategies for public policy |
title_short | AI under great uncertainty: implications and decision strategies for public policy |
title_sort | ai under great uncertainty: implications and decision strategies for public policy |
topic | Open Forum |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421460/ https://www.ncbi.nlm.nih.gov/pubmed/34511737 http://dx.doi.org/10.1007/s00146-021-01263-4 |
work_keys_str_mv | AT nordstrommaria aiundergreatuncertaintyimplicationsanddecisionstrategiesforpublicpolicy |