Cargando…
Computational challenges and opportunities in spatially resolved transcriptomic data analysis
Spatially resolved transcriptomic data demand new computational analysis methods to derive biological insights. Here, we comment on these associated computational challenges as well as highlight the opportunities for standardized benchmarking metrics and data-sharing infrastructure in spurring innov...
Autores principales: | Atta, Lyla, Fan, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421472/ https://www.ncbi.nlm.nih.gov/pubmed/34489425 http://dx.doi.org/10.1038/s41467-021-25557-9 |
Ejemplares similares
-
Gene count normalization in single-cell imaging-based spatially resolved transcriptomics
por: Atta, Lyla, et al.
Publicado: (2023) -
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
por: Miller, Brendan F., et al.
Publicado: (2022) -
Recent advances in spatially resolved transcriptomics: challenges and opportunities
por: Lee, Jongwon, et al.
Publicado: (2022) -
Data journalism and the COVID-19 pandemic: opportunities and challenges
por: Desai, Angel, et al.
Publicado: (2021) -
Alignment of spatial transcriptomics data using diffeomorphic metric mapping
por: Clifton, Kalen, et al.
Publicado: (2023)