Cargando…
Quantifying the Brain Predictivity of Artificial Neural Networks With Nonlinear Response Mapping
Quantifying the similarity between artificial neural networks (ANNs) and their biological counterparts is an important step toward building more brain-like artificial intelligence systems. Recent efforts in this direction use neural predictivity, or the ability to predict the responses of a biologic...
Autores principales: | Anand, Aditi, Sen, Sanchari, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421725/ https://www.ncbi.nlm.nih.gov/pubmed/34504416 http://dx.doi.org/10.3389/fncom.2021.609721 |
Ejemplares similares
-
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021) -
Artificial intelligence in the age of neural networks and brain computing
por: Kozma, Robert, et al.
Publicado: (2018) -
Artificial neural networks
por: Cain, Gayle
Publicado: (2016) -
Artificial neural network applications for software reliability prediction
por: Bisi, Manjubala, et al.
Publicado: (2017) -
Prediction and Modeling of Neuropsychological Scores in Alzheimer’s Disease Using Multimodal Neuroimaging Data and Artificial Neural Networks
por: Hojjati, Seyed Hani, et al.
Publicado: (2022)