Cargando…
The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics
BACKGROUND: With a constantly increasing number of diagnostic images performed each year, Artificial Intelligence (AI) denoising methods offer an opportunity to respond to the growing demand. However, it may affect information in the image in an unknown manner. This study quantifies the effect of AI...
Autores principales: | Jaudet, Cyril, Weyts, Kathleen, Lechervy, Alexis, Batalla, Alain, Bardet, Stéphane, Corroyer-Dulmont, Aurélien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421788/ https://www.ncbi.nlm.nih.gov/pubmed/34504782 http://dx.doi.org/10.3389/fonc.2021.692973 |
Ejemplares similares
-
Deep Learning Denoising Improves and Homogenizes Patient [(18)F]FDG PET Image Quality in Digital PET/CT
por: Weyts, Kathleen, et al.
Publicado: (2023) -
Artificial intelligence-based PET denoising could allow a two-fold reduction in [(18)F]FDG PET acquisition time in digital PET/CT
por: Weyts, Kathleen, et al.
Publicado: (2022) -
The Impact of Resampling and Denoising Deep Learning Algorithms on Radiomics in Brain Metastases MRI
por: Moummad, Ilyass, et al.
Publicado: (2021) -
Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice
por: Corroyer-Dulmont, Aurélien, et al.
Publicado: (2021) -
Artificial intelligence-based (68)Ga-DOTATOC PET denoising for optimizing (68)Ge/(68)Ga generator use throughout its lifetime
por: Quak, Elske, et al.
Publicado: (2023)