Cargando…
The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New Bioinformatics Resource for Use by the Cancer Immunology Community
Recent years have witnessed a dramatic rise in interest towards cancer epitopes in general and particularly neoepitopes, antigens that are encoded by somatic mutations that arise as a consequence of tumorigenesis. There is also an interest in the specific T cell and B cell receptors recognizing thes...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421848/ https://www.ncbi.nlm.nih.gov/pubmed/34504503 http://dx.doi.org/10.3389/fimmu.2021.735609 |
Sumario: | Recent years have witnessed a dramatic rise in interest towards cancer epitopes in general and particularly neoepitopes, antigens that are encoded by somatic mutations that arise as a consequence of tumorigenesis. There is also an interest in the specific T cell and B cell receptors recognizing these epitopes, as they have therapeutic applications. They can also aid in basic studies to infer the specificity of T cells or B cells characterized in bulk and single-cell sequencing data. The resurgence of interest in T cell and B cell epitopes emphasizes the need to catalog all cancer epitope-related data linked to the biological, immunological, and clinical contexts, and most importantly, making this information freely available to the scientific community in a user-friendly format. In parallel, there is also a need to develop resources for epitope prediction and analysis tools that provide researchers access to predictive strategies and provide objective evaluations of their performance. For example, such tools should enable researchers to identify epitopes that can be effectively used for immunotherapy or in defining biomarkers to predict the outcome of checkpoint blockade therapies. We present here a detailed vision, blueprint, and work plan for the development of a new resource, the Cancer Epitope Database and Analysis Resource (CEDAR). CEDAR will provide a freely accessible, comprehensive collection of cancer epitope and receptor data curated from the literature and provide easily accessible epitope and T cell/B cell target prediction and analysis tools. The curated cancer epitope data will provide a transparent benchmark dataset that can be used to assess how well prediction tools perform and to develop new prediction tools relevant to the cancer research community. |
---|