Identification and Integrated Analysis of circRNA and miRNA of Radiation-Induced Lung Injury in a Mouse Model

BACKGROUND: Radiation-induced lung injury (RILI) is a main threat to patients who received thoracic radiotherapy. Thus, understanding the molecular mechanism of RILI is of great importance. Circular RNAs (circRNAs) have been found to act as a regulator of multiple biological processes, and the circR...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yida, Zou, Liqing, Chu, Li, Ye, Luxi, Ni, Jianjiao, Chu, Xiao, Guo, Tiantian, Yang, Xi, Zhu, Zhengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422032/
https://www.ncbi.nlm.nih.gov/pubmed/34511976
http://dx.doi.org/10.2147/JIR.S322736
Descripción
Sumario:BACKGROUND: Radiation-induced lung injury (RILI) is a main threat to patients who received thoracic radiotherapy. Thus, understanding the molecular mechanism of RILI is of great importance. Circular RNAs (circRNAs) have been found to act as a regulator of multiple biological processes, and the circRNA-microRNA (miRNA)-mRNA axis could play an important role in the signaling pathway of many human diseases including radiation injury. METHODS: First, the circRNA and miRNA of RILI in a mouse model were investigated. The mice received 12 Gy of thoracic irradiation, and the irradiated lung tissues at 48 hours after irradiation were analyzed by RNA sequencing (RNA-seq) compared with normal lung tissues. Then, Gene Ontology analysis of the target mRNAs of the significantly differently expressed circRNAs was performed. RESULTS: In the irradiated group, inflammatory changes in lungs were observed; 21 significantly up-regulated and 33 down-regulated significantly miRNAs were identified (p < 0.05). Among 27 differentially expressed circRNAs, 10 were down-regulated and 17 were up-regulated in the irradiated group [log2 (fold change) > 1 or < −1, p<0.05]. These differentially expressed miRNAs took part in a series of cellular processes, such as positive regulation of alpha-beta T-cell proliferation, interstitial matrix, collagen fibril organization, chemokine receptor activity, cellular defense response, and B-cell receptor signaling pathway. The differentially expressed circRNAs were related to Th1 and Th2 differentiation pathways, and the predicted mRNAs were verified. CONCLUSION: This study revealed immune-related molecular pathways play an important role in the early response after radiotherapy. In the future, research on the target mechanism and early intervention of circRNAs with associated miRNAs such as circRNA5229, circRNA544, and circRNA3340, could benefit the treatment of RILI.