Cargando…
Prediction of COVID-19-related Mortality and 30-Day and 60-Day Survival Probabilities Using a Nomogram
BACKGROUND: Prediction of mortality in patients with coronavirus disease 2019 (COVID-19) is a key to improving the clinical outcomes, considering that the COVID-19 pandemic has led to the collapse of healthcare systems in many regions worldwide. This study aimed to identify the factors associated wi...
Autores principales: | Moon, Hui jeong, Kim, Kyunghoon, Kang, Eun Kyeong, Yang, Hyeon-Jong, Lee, Eun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Academy of Medical Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422041/ https://www.ncbi.nlm.nih.gov/pubmed/34490756 http://dx.doi.org/10.3346/jkms.2021.36.e248 |
Ejemplares similares
-
Exploration of a nomogram prediction model of 30-day survival in adult ECMO patients
por: Cui, Liangwen, et al.
Publicado: (2023) -
A nomogram predicting 30-day mortality in patients undergoing percutaneous coronary intervention
por: Song, Jingjing, et al.
Publicado: (2022) -
Development and validation of a nomogram to predict the 30-day mortality risk of patients with intracerebral hemorrhage
por: Zou, Jianyu, et al.
Publicado: (2022) -
30-day and 60-day rates and predictors of mortality among adult stroke patients: Prospective cohort study
por: Fekadu, Ginenus, et al.
Publicado: (2020) -
Machine Learning Models to Predict 30-Day Mortality in Mechanically Ventilated Patients
por: Kim, Jong Ho, et al.
Publicado: (2021)