Cargando…

Enhanced Expression of miR-34a Enhances Escherichia coli Lipopolysaccharide-Mediated Endometritis by Targeting LGR4 to Activate the NF-κB Pathway

BACKGROUND: Persistent endometritis caused by bacterial infections has lethal effects on the reproductive performance of dairy cattle, which compromises animal welfare and delays or prevents pregnancy. The microRNA (miRNA) miR-34 family plays a pivotal role in the inflammatory process; however, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Xiaofei, Yin, Baoyi, Guo, Shuai, Umar, Talha, Liu, Junfeng, Wu, Zhimin, Zhou, Qingqing, Zahoor, Arshad, Deng, Ganzhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422159/
https://www.ncbi.nlm.nih.gov/pubmed/34504639
http://dx.doi.org/10.1155/2021/1744754
Descripción
Sumario:BACKGROUND: Persistent endometritis caused by bacterial infections has lethal effects on the reproductive performance of dairy cattle, which compromises animal welfare and delays or prevents pregnancy. The microRNA (miRNA) miR-34 family plays a pivotal role in the inflammatory process; however, the precise mechanism of miR-34a in endometritis has not been thoroughly elucidated to date. METHODS: In this study, the endometrium of cows diagnosed with endometritis was harvested for bacterial culture and Gram staining to evaluate bacterial contamination of the uterus. Based on this, a bovine endometrial epithelial cell (BEND) inflammation model and a mouse model stimulated with lipopolysaccharide (LPS) in vitro and in vivo were constructed. Cell viability was assessed by CCK-8, trypan blue staining, and flow cytometry. H&E was applied to histopathological analysis. Immunohistochemical, immunofluorescence, qRT-PCR, and western blot assays were performed to measure the mRNA and protein expression of relevant genes. Online databases, plasmid construction, and dual-luciferase reporter gene assays were used to predict and validate the interaction between miR-34a and its target gene LGR4. Finally, mice were injected vaginally with a local antagomir to validate the role of miR-34a in murine uterine inflammation. RESULTS: In this study, we observed that Gram-negative bacteria, represented by Escherichia coli, are the predominant pathogenic agents responsible for the recurrent occurrence of endometritis in dairy cows. Further, miR-34a was found to repress the expression of LGR4 by targeting the 3′ untranslated region (3′UTR) of LGR4. miR-34a was upregulated in bovine uterine tissues and bovine endometrial epithelial cells stimulated with LPS. miR-34a induced the release of the proinflammatory cytokines IL-1β, IL-6, and TNF-α by activating the phosphorylation of NF-κB p65. Furthermore, IL-1β upregulated miR-34a transcription and downregulated LGR4 expression in an IL-1β-dependent manner. CONCLUSIONS: Taken together, our study confirmed that miR-34a is regulated by IL-1β and suppresses the level of the LGR4 3′UTR, which in turn exacerbates the inflammatory response. Thus, the knockdown of miR-34a might be a new direction for the treatment of endometritis.