Cargando…
Relative sensitivity of duckweed Lemna minor and six algae to seven herbicides
We investigated the relative sensitivity of duckweed Lemna minor and six species of algae to seven herbicides, using an efficient high-throughput microplate-based toxicity assay. First, we assessed the sensitivity of L. minor to the seven herbicides, and then we compared its sensitivity to that of p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pesticide Science Society of Japan
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422251/ https://www.ncbi.nlm.nih.gov/pubmed/34566460 http://dx.doi.org/10.1584/jpestics.D21-018 |
Sumario: | We investigated the relative sensitivity of duckweed Lemna minor and six species of algae to seven herbicides, using an efficient high-throughput microplate-based toxicity assay. First, we assessed the sensitivity of L. minor to the seven herbicides, and then we compared its sensitivity to that of previously published data for six algal species based on EC(50) values. For five herbicides, the most sensitive species differed: L. minor was most sensitive to cyclosulfamuron: Raphidocelis subcapitata was most sensitive to pretilachlor and esprocarb: Desmodesmus subspicatus was most sensitive to pyraclonil; and Navicula pelliculosa was most sensitive to pyrazoxyfen. Simetryn was evenly toxic to all species, whereas 2,4-D was evenly less toxic, with only small differences in species sensitivity. These results suggested that a single algal species cannot represent the sensitivity of the primary producer assemblage to a given herbicide. Therefore, to assess the ecological effects of herbicides, aquatic plant and multispecies algal toxicity data sets are essential. |
---|