Cargando…
MRI-based brain tumor segmentation using FPGA-accelerated neural network
BACKGROUND: Brain tumor segmentation is a challenging problem in medical image processing and analysis. It is a very time-consuming and error-prone task. In order to reduce the burden on physicians and improve the segmentation accuracy, the computer-aided detection (CAD) systems need to be developed...
Autores principales: | Xiong, Siyu, Wu, Guoqing, Fan, Xitian, Feng, Xuan, Huang, Zhongcheng, Cao, Wei, Zhou, Xuegong, Ding, Shijin, Yu, Jinhua, Wang, Lingli, Shi, Zhifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422637/ https://www.ncbi.nlm.nih.gov/pubmed/34493208 http://dx.doi.org/10.1186/s12859-021-04347-6 |
Ejemplares similares
-
SoC FPGA Accelerated Sub-Optimized Binary Fully Convolutional Neural Network for Robotic Floor Region Segmentation
por: Sun, Chi-Chia, et al.
Publicado: (2020) -
FPGA accelerator for protein secondary structure prediction based on the GOR algorithm
por: Xia, Fei, et al.
Publicado: (2011) -
FPGA-based hardware accelerators
por: Skliarova, Iouliia, et al.
Publicado: (2019) -
FPGA-based acceleration of MRI registration: an enabling technique for improving MRI-guided cardiac therapy
por: Kwok, Ka-Wai, et al.
Publicado: (2014) -
Accelerating Faceting Wide-Field Imaging Algorithm with FPGA for SKA Radio Telescope as a Vast Sensor Array †
por: Song, Yuefeng, et al.
Publicado: (2020)