Cargando…
A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction
Automatic cell segmentation and tracking enables to gain quantitative insights into the processes driving cell migration. To investigate new data with minimal manual effort, cell tracking algorithms should be easy to apply and reduce manual curation time by providing automatic correction of segmenta...
Autores principales: | Löffler, Katharina, Scherr, Tim, Mikut, Ralf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423278/ https://www.ncbi.nlm.nih.gov/pubmed/34492015 http://dx.doi.org/10.1371/journal.pone.0249257 |
Ejemplares similares
-
Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy
por: Scherr, Tim, et al.
Publicado: (2020) -
An Algorithm to Automate Yeast Segmentation and Tracking
por: Doncic, Andreas, et al.
Publicado: (2013) -
Segmentation errors and intertest reliability in automated and manually traced hippocampal volumes
por: Brinkmann, Benjamin H., et al.
Publicado: (2019) -
microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation
por: Scherr, Tim, et al.
Publicado: (2022) -
Sarc-Graph: Automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes
por: Zhao, Bill, et al.
Publicado: (2021)