Cargando…
A simple regulatory architecture allows learning the statistical structure of a changing environment
Bacteria live in environments that are continuously fluctuating and changing. Exploiting any predictability of such fluctuations can lead to an increased fitness. On longer timescales, bacteria can ‘learn’ the structure of these fluctuations through evolution. However, on shorter timescales, inferri...
Autores principales: | Landmann, Stefan, Holmes, Caroline M, Tikhonov, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423446/ https://www.ncbi.nlm.nih.gov/pubmed/34490844 http://dx.doi.org/10.7554/eLife.67455 |
Ejemplares similares
-
Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif
por: Ali, Md Zulfikar, et al.
Publicado: (2020) -
Normative decision rules in changing environments
por: Barendregt, Nicholas W, et al.
Publicado: (2022) -
Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments
por: Jackson, Christopher A, et al.
Publicado: (2020) -
Statistical context dictates the relationship between feedback-related EEG signals and learning
por: Nassar, Matthew R, et al.
Publicado: (2019) -
Structure of the HIV immature lattice allows for essential lattice remodeling within budded virions
por: Guo, Sikao, et al.
Publicado: (2023)