Cargando…
Dual-Path Attention Compensation U-Net for Stroke Lesion Segmentation
For the segmentation task of stroke lesions, using the attention U-Net model based on the self-attention mechanism can suppress irrelevant regions in an input image while highlighting salient features useful for specific tasks. However, when the lesion is small and the lesion contour is blurred, att...
Autores principales: | Hui, Haisheng, Zhang, Xueying, Wu, Zelin, Li, Fenlian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423551/ https://www.ncbi.nlm.nih.gov/pubmed/34504522 http://dx.doi.org/10.1155/2021/7552185 |
Ejemplares similares
-
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021) -
Anti-Aliasing Attention U-net Model for Skin Lesion Segmentation
por: Le, Phuong Thi, et al.
Publicado: (2023) -
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
por: Zhang, Jian, et al.
Publicado: (2023) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020)