Cargando…
Clustering of Brain Tumor Based on Analysis of MRI Images Using Robust Principal Component Analysis (ROBPCA) Algorithm
Automated detection of brain tumor location is essential for both medical and analytical uses. In this paper, we clustered brain MRI images to detect tumor location. To obtain perfect results, we presented an unsupervised robust PCA algorithm to clustered images. The proposed method clusters brain M...
Autores principales: | Hamzenejad, Ali, Ghoushchi, Saeid Jafarzadeh, Baradaran, Vahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423553/ https://www.ncbi.nlm.nih.gov/pubmed/34504897 http://dx.doi.org/10.1155/2021/5516819 |
Ejemplares similares
-
A robust fuzzy multi-objective location-routing problem for hazardous waste under uncertain conditions
por: Raeisi, Diba, et al.
Publicado: (2022) -
Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
por: Ranjbarzadeh, Ramin, et al.
Publicado: (2021) -
Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis
por: Lin, Nan, et al.
Publicado: (2015) -
Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis
por: Feng, Qianjin, et al.
Publicado: (2016) -
Principal component analysis networks and algorithms
por: Kong, Xiangyu, et al.
Publicado: (2017)