Cargando…
Protective Effect of Yi Shen Pai Du Formula against Diabetic Kidney Injury via Inhibition of Oxidative Stress, Inflammation, and Epithelial-to-Mesenchymal Transition in db/db Mice
OBJECTIVE: Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes; however, there remains a lack of effective therapeutic strategies. Yi Shen Pai Du Formula (YSPDF), a traditional Chinese medicine preparation, has been clinically used in treating chro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423573/ https://www.ncbi.nlm.nih.gov/pubmed/34504642 http://dx.doi.org/10.1155/2021/7958021 |
Sumario: | OBJECTIVE: Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes; however, there remains a lack of effective therapeutic strategies. Yi Shen Pai Du Formula (YSPDF), a traditional Chinese medicine preparation, has been clinically used in treating chronic kidney disease (CKD) for more than 20 years. However, whether YSPDF has a therapeutic effect on DKD has not been studied. METHODS: This study was conducted to investigate the effect of YSPDF administration on db/db mice, a model of type 2 diabetes that develops DKD, and reveal its underlying mechanism of action through a high glucose- (HG-) induced renal injury cell model. RESULTS: We found that YSPDF significantly improved numerous biochemical parameters (fasting blood glucose, serum creatinine, blood urea nitrogen, 24 h urine total protein, total cholesterol, and total triglycerides) and ameliorated the abnormal histology and fibrosis of renal tissue. Moreover, the status of oxidative stress and levels of inflammatory cytokines (TNF-α, IL-6, IL-1β, and MCP-1) were markedly inhibited by YSPDF treatment. YSPDF treatment significantly mitigated renal fibrosis, with evidence suggesting that this was by inhibiting epithelial-to-mesenchymal transition (EMT) via suppression of the TGF-β1/Smad pathway. Interestingly, the expression of Nrf2, HO-1, and NQO1, proteins known to be associated with oxidative stress, were significantly increased upon administration of YSPDF. The levels of NLRP3 inflammasome proteins, including NLRP3, ASC, caspase-1, and cleaved caspase-1 were decreased in the YSPDF-treated group. Cell experiments showed that YSPDF inhibited EMT and the NLRP3 inflammasome in HG-exposed HK-2 cells, possibly via activation of Nrf2. CONCLUSION: Our study indicates that YSPDF may ameliorate renal damage in db/db mice via inhibition of oxidative stress, inflammation, and EMT, with the mechanism potentially being related to the activation of the Nrf2 pathway. |
---|