Cargando…
An interaction regression model for crop yield prediction
Crop yield prediction is crucial for global food security yet notoriously challenging due to multitudinous factors that jointly determine the yield, including genotype, environment, management, and their complex interactions. Integrating the power of optimization, machine learning, and agronomic ins...
Autores principales: | Ansarifar, Javad, Wang, Lizhi, Archontoulis, Sotirios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423743/ https://www.ncbi.nlm.nih.gov/pubmed/34493778 http://dx.doi.org/10.1038/s41598-021-97221-7 |
Ejemplares similares
-
A time-dependent parameter estimation framework for crop modeling
por: Akhavizadegan, Faezeh, et al.
Publicado: (2021) -
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020) -
Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
por: Shahhosseini, Mohsen, et al.
Publicado: (2021) -
County-scale crop yield prediction by integrating crop simulation with machine learning models
por: Sajid, Saiara Samira, et al.
Publicado: (2022) -
Performance prediction of crosses in plant breeding through genotype by environment interactions
por: Ansarifar, Javad, et al.
Publicado: (2020)