Cargando…

Time-Resolved Monitoring of the Oxygen Transfer Rate of Chinese Hamster Ovary Cells Provides Insights Into Culture Behavior in Shake Flasks

Cultivations of mammalian cells are routinely conducted in shake flasks. In contrast to instrumented bioreactors, reliable options for non-invasive, time-resolved monitoring of the culture status in shake flasks are lacking. The Respiration Activity Monitoring Respiration Activity Monitoring System...

Descripción completa

Detalles Bibliográficos
Autores principales: Ihling, Nina, Munkler, Lara Pauline, Berg, Christoph, Reichenbächer, Britta, Wirth, Johannes, Lang, Dietmar, Wagner, Roland, Büchs, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423908/
https://www.ncbi.nlm.nih.gov/pubmed/34513814
http://dx.doi.org/10.3389/fbioe.2021.725498
Descripción
Sumario:Cultivations of mammalian cells are routinely conducted in shake flasks. In contrast to instrumented bioreactors, reliable options for non-invasive, time-resolved monitoring of the culture status in shake flasks are lacking. The Respiration Activity Monitoring Respiration Activity Monitoring System system was used to determine the oxygen transfer rate (OTR) in shake flasks. It was proven that the OTR could be regarded as equal to the oxygen uptake rate as the change of the dissolved oxygen concentration in the liquid phase over time was negligibly small. Thus, monitoring the oxygen transfer rate (OTR) was used to increase the information content from shake flask experiments. The OTR of a Chinese hamster ovary cell line was monitored by applying electrochemical sensors. Glass flasks stoppered with cotton plugs and polycarbonate flasks stoppered with vent-caps were compared in terms of mass transfer characteristics and culture behavior. Similar mass transfer resistances were determined for both sterile closures. The OTR was found to be well reproducible within one experiment (standard deviation <10%). It correlated with changes in cell viability and depletion of carbon sources, thus, giving more profound insights into the cultivation process. Culture behavior in glass and polycarbonate flasks was identical. Monitoring of the OTR was applied to a second culture medium. Media differed in the maximum OTR reached during cultivation and in the time when all carbon sources were depleted. By applying non-invasive, parallelized, time-resolved monitoring of the OTR, the information content and amount of data from shake flask experiments was significantly increased compared to manual sampling and offline analysis. The potential of the technology for early-stage process development was demonstrated.