Cargando…
Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
Atrial fibrillation (AF) is the most common cardiac arrhythmia and currently affects more than 650,000 people in the United Kingdom alone. Catheter ablation (CA) is the only AF treatment with a long-term curative effect as it involves destroying arrhythmogenic tissue in the atria. However, its succe...
Autores principales: | Muizniece, Laila, Bertagnoli, Adrian, Qureshi, Ahmed, Zeidan, Aya, Roy, Aditi, Muffoletto, Marica, Aslanidi, Oleg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424004/ https://www.ncbi.nlm.nih.gov/pubmed/34512401 http://dx.doi.org/10.3389/fphys.2021.733139 |
Ejemplares similares
-
Corrigendum: Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Toward Patient-Specific Prediction of Ablation Strategies for Atrial Fibrillation Using Deep Learning
por: Muffoletto, Marica, et al.
Publicado: (2021) -
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
por: Ogbomo-Harmitt, Shaheim, et al.
Publicado: (2023) -
Can artificial intelligence prediction of successful atrial fibrillation catheter ablation therapy be interpretable?
por: Ogbomo-Harmitt, S, et al.
Publicado: (2022) -
Image-Based Computational Evaluation of the Effects of Atrial Wall Thickness and Fibrosis on Re-entrant Drivers for Atrial Fibrillation
por: Roy, Aditi, et al.
Publicado: (2018)