Cargando…

Coagulation and Fibrinolysis Biomarkers as Potential Indicators for the Diagnosis and Classification of Ovarian Hyperstimulation Syndrome

Background: Accurate diagnosis and classification of ovarian hyperstimulation syndrome (OHSS) is important for its management. We employed a new high-sensitivity chemiluminescence immunoassay to detect the thrombin-antithrombin complex (TAT), plasmin alpha2-plasmin inhibitor complex (PIC), soluble t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuai, Qian, Yaqi, Pei, Yue, Wu, Kaiqi, Lu, Shiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424034/
https://www.ncbi.nlm.nih.gov/pubmed/34513881
http://dx.doi.org/10.3389/fmed.2021.720342
Descripción
Sumario:Background: Accurate diagnosis and classification of ovarian hyperstimulation syndrome (OHSS) is important for its management. We employed a new high-sensitivity chemiluminescence immunoassay to detect the thrombin-antithrombin complex (TAT), plasmin alpha2-plasmin inhibitor complex (PIC), soluble thrombomodulin (sTM), and tissue plasminogen activator-inhibitor complex (TPAI-C), and evaluated their diagnostic and classification performance for OHSS. Methods: A total of 106 women were enrolled, including 51 patients with OHSS (25 mild or moderate OHSS, 26 severe OHSS), and 55 without OHSS (control group). TAT, PIC, sTM, and TPAI-C levels were measured using the Sysmex HISCL5000 automated analyzer. Results: Compared to the control group, TAT, PIC, and TPAI-C levels were significantly higher (P < 0.001, P < 0.001, P < 0.001, respectively), whereas the sTM level was significantly lower (P < 0.001) in the patients with OHSS. The receiver operating characteristic was used to evaluate the diagnostic efficiency. For the diagnosis of OHSS, the area under the curves (AUCs) for TAT, PIC, sTM, and TPAI-C were 0.991, 0.973, 0.809, and 0.722, respectively. In particular, the sensitivity, specificity, positive predictive value, and negative predictive value for TAT and PIC were all above 90%. For the differential diagnosis of mild–moderate and severe OHSS, the AUCs for TAT, PIC, and TPAI-C were 0.736, 0.735, and 0.818, respectively. The cutoff values of TAT, PIC, and TPAI-C for the differential diagnosis of mild–moderate and severe OHSS were 11.5 ng/mL, 2.4 μg/mL, and 5.8 ng/mL, respectively. Based on these cutoff values, eight cases of mild–moderate OHSS exceeded the cutoff values, two of which developed to severe OHSS in the following days. However, of the remaining 17 cases of mild–moderate OHSS patients with negative biomarkers, none subsequently developed severe OHSS. Conclusions: TAT, PIC, sTM, and TPAI-C can be used as sensitive biomarkers in the diagnosis of OHSS. Meanwhile, TAT, PIC, and TPAI-C also displayed remarkable potential in the classification of OHSS. In addition, the levels of TAT, PIC, and TPAI-C above the cutoff values in patients with mild–moderate OHSS might predict a high risk of developing severe OHSS.