Cargando…
Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation
The aim of this study was to develop a diagnostic strategy for esophageal squamous cell carcinoma (ESCC) that combines plasma metabolomics with machine learning algorithms. Plasma-based untargeted metabolomics analysis was performed with samples derived from 88 ESCC patients and 52 healthy controls....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424362/ https://www.ncbi.nlm.nih.gov/pubmed/34513127 http://dx.doi.org/10.1016/j.jpha.2020.11.009 |
Sumario: | The aim of this study was to develop a diagnostic strategy for esophageal squamous cell carcinoma (ESCC) that combines plasma metabolomics with machine learning algorithms. Plasma-based untargeted metabolomics analysis was performed with samples derived from 88 ESCC patients and 52 healthy controls. The dataset was split into a training set and a test set. After identification of differential metabolites in training set, single-metabolite-based receiver operating characteristic (ROC) curves and multiple-metabolite-based machine learning models were used to distinguish between ESCC patients and healthy controls. Kaplan-Meier survival analysis and Cox proportional hazards regression analysis were performed to investigate the prognostic significance of the plasma metabolites. Finally, twelve differential plasma metabolites (six up-regulated and six down-regulated) were annotated. The predictive performance of the six most prevalent diagnostic metabolites through the diagnostic models in the test set were as follows: arachidonic acid (accuracy: 0.887), sebacic acid (accuracy: 0.867), indoxyl sulfate (accuracy: 0.850), phosphatidylcholine (PC) (14:0/0:0) (accuracy: 0.825), deoxycholic acid (accuracy: 0.773), and trimethylamine N-oxide (accuracy: 0.653). The prediction accuracies of the machine learning models in the test set were partial least-square (accuracy: 0.947), random forest (accuracy: 0.947), gradient boosting machine (accuracy: 0.960), and support vector machine (accuracy: 0.980). Additionally, survival analysis demonstrated that acetoacetic acid was an unfavorable prognostic factor (hazard ratio (HR): 1.752), while PC (14:0/0:0) (HR: 0.577) was a favorable prognostic factor for ESCC. This study devised an innovative strategy for ESCC diagnosis by combining plasma metabolomics with machine learning algorithms and revealed its potential to become a novel screening test for ESCC. |
---|