Cargando…
Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes
OBJECTIVE: Development of novel informatics methods focused on improving pregnancy outcomes remains an active area of research. The purpose of this study is to systematically review the ways that artificial intelligence (AI) and machine learning (ML), including deep learning (DL), methodologies can...
Autores principales: | Davidson, Lena, Boland, Mary Regina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424395/ https://www.ncbi.nlm.nih.gov/pubmed/33406530 http://dx.doi.org/10.1093/bib/bbaa369 |
Ejemplares similares
-
Enabling pregnant women and their physicians to make informed medication decisions using artificial intelligence
por: Davidson, Lena, et al.
Publicado: (2020) -
Artificial intelligence, machine learning, and deep learning
por: Campesato, Oswald
Publicado: (2020) -
Artificial intelligence driven by machine learning and deep learning
por: Zohuri, Bahman, et al.
Publicado: (2020) -
Artificial intelligence, machine learning, and deep learning in orthopedic surgery
por: Atik, O. Şahap
Publicado: (2022) -
Artificial intelligence to deep learning: machine intelligence approach for drug discovery
por: Gupta, Rohan, et al.
Publicado: (2021)