Cargando…
MSIsensor-ct: microsatellite instability detection using cfDNA sequencing data
Motivation: Microsatellite instability (MSI) is a promising biomarker for cancer prognosis and chemosensitivity. Techniques are rapidly evolving for the detection of MSI from tumor-normal paired or tumor-only sequencing data. However, tumor tissues are often insufficient, unavailable, or otherwise d...
Autores principales: | Han, Xinyin, Zhang, Shuying, Zhou, Daniel Cui, Wang, Dongliang, He, Xiaoyu, Yuan, Danyang, Li, Ruilin, He, Jiayin, Duan, Xiaohong, Wendl, Michael C, Ding, Li, Niu, Beifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424396/ https://www.ncbi.nlm.nih.gov/pubmed/33461213 http://dx.doi.org/10.1093/bib/bbaa402 |
Ejemplares similares
-
MSIsensor-pro: Fast, Accurate, and Matched-normal-sample-free Detection of Microsatellite Instability
por: Jia, Peng, et al.
Publicado: (2020) -
PEcnv: accurate and efficient detection of copy number variations of various lengths
por: Wang, Xuwen, et al.
Publicado: (2022) -
ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning
por: Wang, Xiaoyu, et al.
Publicado: (2022) -
RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins
por: Peng, Xinxin, et al.
Publicado: (2022) -
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022)