Cargando…
GO2Vec: transforming GO terms and proteins to vector representations via graph embeddings
BACKGROUND: Semantic similarity between Gene Ontology (GO) terms is a fundamental measure for many bioinformatics applications, such as determining functional similarity between genes or proteins. Most previous research exploited information content to estimate the semantic similarity between GO ter...
Autores principales: | Zhong, Xiaoshi, Kaalia, Rama, Rajapakse, Jagath C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424702/ https://www.ncbi.nlm.nih.gov/pubmed/31874639 http://dx.doi.org/10.1186/s12864-019-6272-2 |
Ejemplares similares
-
Graph embeddings on gene ontology annotations for protein–protein interaction prediction
por: Zhong, Xiaoshi, et al.
Publicado: (2020) -
Functional homogeneity and specificity of topological modules in human proteome
por: Kaalia, Rama, et al.
Publicado: (2019) -
Refining modules to determine functionally significant clusters in molecular networks
por: Kaalia, Rama, et al.
Publicado: (2019) -
rest2vec: Vectorizing the resting-state functional connectome using graph embedding
por: Morrissey, Zachery D., et al.
Publicado: (2020) -
KG2Vec: A node2vec-based vectorization model for knowledge graph
por: Wang, YueQun, et al.
Publicado: (2021)