Cargando…
PUResNet: prediction of protein-ligand binding sites using deep residual neural network
BACKGROUND: Predicting protein-ligand binding sites is a fundamental step in understanding the functional characteristics of proteins, which plays a vital role in elucidating different biological functions and is a crucial step in drug discovery. A protein exhibits its true nature after binding to i...
Autores principales: | Kandel, Jeevan, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424938/ https://www.ncbi.nlm.nih.gov/pubmed/34496970 http://dx.doi.org/10.1186/s13321-021-00547-7 |
Ejemplares similares
-
CapsNh-Kcr: Capsule network-based prediction of lysine crotonylation sites in human non-histone proteins
por: Khanal, Jhabindra, et al.
Publicado: (2022) -
ENet-6mA: Identification of 6mA Modification Sites in Plant Genomes Using ElasticNet and Neural Networks
por: Abbas, Zeeshan, et al.
Publicado: (2022) -
iPseU-CNN: Identifying RNA Pseudouridine Sites Using Convolutional Neural Networks
por: Tahir, Muhammad, et al.
Publicado: (2019) -
ProB-Site: Protein Binding Site Prediction Using Local Features
por: Khan, Sharzil Haris, et al.
Publicado: (2022) -
i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties
por: Alam, Waleed, et al.
Publicado: (2021)