Cargando…

Effect of abdominal compression on target movement and extension of the external boundary of peripheral lung tumours treated with stereotactic radiotherapy based on four-dimensional computed tomography

BACKGROUND: This study aimed to investigate the effect of abdominal compression on tumour motion and target volume and to determine suitable planning target volume (PTV) margins for patients treated with lung stereotactic body radiotherapy (SBRT) based on four-dimensional computed tomography (4DCT)....

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Yuanjun, Li, Jianbin, Zhang, Yingjie, Shao, Qian, Liu, Xijun, Li, Fengxiang, Wang, Jinzhi, Li, Zhenxiang, Wang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425044/
https://www.ncbi.nlm.nih.gov/pubmed/34493303
http://dx.doi.org/10.1186/s13014-021-01889-0
Descripción
Sumario:BACKGROUND: This study aimed to investigate the effect of abdominal compression on tumour motion and target volume and to determine suitable planning target volume (PTV) margins for patients treated with lung stereotactic body radiotherapy (SBRT) based on four-dimensional computed tomography (4DCT). METHODS: Twenty-three patients diagnosed to have a peripheral pulmonary tumour were selected and divided into an all lesions group (group A), an upper middle lobe lesions group (group B), and a lower lobe lesions group (group C). Two 4DCT scans were performed in each patient, one with and one without abdominal compression. Cone beam computed tomography (CBCT) was performed before starting treatment. The gross target volumes (GTVs) were delineated and internal gross target volumes (IGTVs) were defined. IGTVs were generated using two methods: (1) the maximum intensity projections (MIPs) based on the 4DCT were reconstructed to form a single volume and defined as the IGTVMIP and (2) GTVs from all 10 phases were combined to form a single volume and defined as the IGTV10. A 5-mm, 4-mm, and 3-mm margin was added in all directions on the IGTVMIP and the volume was constructed as PTVMIP(5mm), PTVMIP(4mm), and PTVMIP(3mm). RESULTS: There was no significant difference in the amplitude of tumour motion in the left–right, anterior–posterior, or superior-inferior direction according to whether or not abdominal compression was applied (group A, p = 0.43, 0.27, and 0.29, respectively; group B, p = 0.46, 0.15, and 0.45; group C, p = 0.79, 0.86, and 0.37; Wilcoxon test). However, the median IGTVMIP without abdominal compression was 33.67% higher than that with compression (p = 0.00), and the median IGTV10 without compression was 16.08% higher than that with compression (p = 0.00). The median proportion of the degree of inclusion of the IGTVCBCT in PTVMIP(5mm), PTVMIP(4mm), and PTVMIP(3mm) ≥ 95% was 100%, 100%, and 83.33%, respectively. CONCLUSIONS: Abdominal compression was useful for reducing the size of the IGTVMIP and IGTV10 and for decreasing the PTV margins based on 4DCT. In IGTVMIP with abdominal compression, adding a 4-mm margin to account for respiration is feasible in SBRT based on 4DCT.