Cargando…
DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence
Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, sin...
Autores principales: | Song, Qianqian, Su, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425268/ https://www.ncbi.nlm.nih.gov/pubmed/33480403 http://dx.doi.org/10.1093/bib/bbaa414 |
Ejemplares similares
-
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
por: Geras, Agnieszka, et al.
Publicado: (2023) -
Ariadne: synthetic long read deconvolution using assembly graphs
por: Mak, Lauren, et al.
Publicado: (2023) -
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023) -
SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
por: Elosua-Bayes, Marc, et al.
Publicado: (2021)