Cargando…
Locating transcription factor binding sites by fully convolutional neural network
Transcription factors (TFs) play an important role in regulating gene expression, thus identification of the regions bound by them has become a fundamental step for molecular and cellular biology. In recent years, an increasing number of deep learning (DL) based methods have been proposed for predic...
Autores principales: | Zhang, Qinhu, Wang, Siguo, Chen, Zhanheng, He, Ying, Liu, Qi, Huang, De-Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425303/ https://www.ncbi.nlm.nih.gov/pubmed/33498086 http://dx.doi.org/10.1093/bib/bbaa435 |
Ejemplares similares
-
RefRGim: an intelligent reference panel reconstruction method for genotype imputation with convolutional neural networks
por: Shi, Shuo, et al.
Publicado: (2021) -
DeepFeature: feature selection in nonimage data using convolutional neural network
por: Sharma, Alok, et al.
Publicado: (2021) -
GuidingNet: revealing transcriptional cofactor and predicting binding for DNA methyltransferase by network regularization
por: Ren, Lixin, et al.
Publicado: (2020) -
A universal framework for single-cell multi-omics data integration with graph convolutional networks
por: Gao, Hongli, et al.
Publicado: (2023) -
Dissecting and predicting different types of binding sites in nucleic acids based on structural information
por: Jiang, Zheng, et al.
Publicado: (2021)