Cargando…
Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients
Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) pl...
Autores principales: | Wang, Zihao, Wang, Yaning, Yang, Tianrui, Xing, Hao, Wang, Yuekun, Gao, Lu, Guo, Xiaopeng, Xing, Bing, Wang, Yu, Ma, Wenbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425448/ https://www.ncbi.nlm.nih.gov/pubmed/33839757 http://dx.doi.org/10.1093/bib/bbab032 |
Ejemplares similares
-
HLA3D: an integrated structure-based computational toolkit for immunotherapy
por: Li, Xingyu, et al.
Publicado: (2022) -
Multi-modal chemical information reconstruction from images and texts for exploring the near-drug space
por: Wang, Jie, et al.
Publicado: (2022) -
e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature
por: Feng, Ziyan, et al.
Publicado: (2022) -
EXPERT: transfer learning-enabled context-aware microbial community classification
por: Chong, Hui, et al.
Publicado: (2022) -
Multiomics integration-based molecular characterizations of COVID-19
por: Li, Chuan-Xing, et al.
Publicado: (2021)