Cargando…

Multivariate random forest prediction of poverty and malnutrition prevalence

Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies’ programming. However, state of the art models often rely on proprietary data and/or deep or transfer...

Descripción completa

Detalles Bibliográficos
Autores principales: Browne, Chris, Matteson, David S., McBride, Linden, Hu, Leiqiu, Liu, Yanyan, Sun, Ying, Wen, Jiaming, Barrett, Christopher B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425567/
https://www.ncbi.nlm.nih.gov/pubmed/34495951
http://dx.doi.org/10.1371/journal.pone.0255519
Descripción
Sumario:Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies’ programming. However, state of the art models often rely on proprietary data and/or deep or transfer learning methods whose underlying mechanics may be challenging to interpret. We demonstrate how interpretable random forest models can produce estimates of a set of (potentially correlated) malnutrition and poverty prevalence measures using free, open access, regularly updated, georeferenced data. We demonstrate two use cases: contemporaneous prediction, which might be used for poverty mapping, geographic targeting, or monitoring and evaluation tasks, and a sequential nowcasting task that can inform early warning systems. Applied to data from 11 low and lower-middle income countries, we find predictive accuracy broadly comparable for both tasks to prior studies that use proprietary data and/or deep or transfer learning methods.