Cargando…
Multivariate random forest prediction of poverty and malnutrition prevalence
Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies’ programming. However, state of the art models often rely on proprietary data and/or deep or transfer...
Autores principales: | Browne, Chris, Matteson, David S., McBride, Linden, Hu, Leiqiu, Liu, Yanyan, Sun, Ying, Wen, Jiaming, Barrett, Christopher B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425567/ https://www.ncbi.nlm.nih.gov/pubmed/34495951 http://dx.doi.org/10.1371/journal.pone.0255519 |
Ejemplares similares
-
The Intertwined Relationship Between Malnutrition and Poverty
por: Siddiqui, Faareha, et al.
Publicado: (2020) -
Editorial: Malnutrition: A Cause or a Consequence of Poverty?
por: Ma, Zheng Feei, et al.
Publicado: (2022) -
Poverty, malnutrition, underdevelopment and cardiovascular disease: a South African perspective
por: Vorster, HH, et al.
Publicado: (2007) -
Malnutrition and poverty in India: does the use of public distribution system matter?
por: Panda, Basant Kumar, et al.
Publicado: (2020) -
Poverty and childhood malnutrition: Evidence-based on a nationally representative survey of Bangladesh
por: Rahman, Md. Ashfikur, et al.
Publicado: (2021)