Cargando…
A depthwise separable dense convolutional network with convolution block attention module for COVID-19 diagnosis on CT scans
Coronavirus disease 2019 (COVID-19) has caused more than 3 million deaths and infected more than 170 million individuals all over the world. Rapid identification of patients with COVID-19 is the key to control transmission and prevent depletion of hospitals. Several networks have been proposed to as...
Autores principales: | Li, Qian, Ning, Jiangbo, Yuan, Jianping, Xiao, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425669/ https://www.ncbi.nlm.nih.gov/pubmed/34530335 http://dx.doi.org/10.1016/j.compbiomed.2021.104837 |
Ejemplares similares
-
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022) -
Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network
por: Liu, Bingyan, et al.
Publicado: (2021) -
LdsConv: Learned Depthwise Separable Convolutions by Group Pruning
por: Lin, Wenxiang, et al.
Publicado: (2020) -
A Malicious Code Detection Method Based on Stacked Depthwise Separable Convolutions and Attention Mechanism
por: Huang, Hong, et al.
Publicado: (2023) -
Recognition of Crop Diseases Based on Depthwise Separable Convolution in Edge Computing
por: Gu, Musong, et al.
Publicado: (2020)