Cargando…

Social network-based cohorting to reduce the spread of SARS-CoV-2 in secondary schools: A simulation study in classrooms of four European countries

BACKGROUND: Operating schools safely under pandemic conditions is a widespread policy goal. We analyse the effectiveness of classroom cohorting, i.e., the decomposition of classrooms into smaller isolated units, in inhibiting the spread of SARS-CoV-2 in European secondary schools and compare differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaiser, Anna Karoline, Kretschmer, David, Leszczensky, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425748/
https://www.ncbi.nlm.nih.gov/pubmed/34518822
http://dx.doi.org/10.1016/j.lanepe.2021.100166
Descripción
Sumario:BACKGROUND: Operating schools safely under pandemic conditions is a widespread policy goal. We analyse the effectiveness of classroom cohorting, i.e., the decomposition of classrooms into smaller isolated units, in inhibiting the spread of SARS-CoV-2 in European secondary schools and compare different cohorting strategies. METHODS: Using real-world network data on 12,291 adolescents collected in classrooms in England, Germany, the Netherlands, and Sweden in 2010/2011, we apply agent-based simulations to compare the effect of forming cohorts randomly to network-based cohorting. Network-based cohorting attempts to allocate out-of-school contacts to the same cohort to prevent cross-cohort infection more effectively. We consider explicitly minimizing out-of-school cross-cohort contacts, approximating this information-heavy optimization strategy by chained nominations of contacts, and dividing classrooms by gender. We also compare the effect of instructing cohorts in-person every second week to daily but separate in-person instruction of both cohorts. FINDINGS: We find that cohorting reduces the spread of SARS-CoV-2 in classrooms. Relative to random cohorting, network-based strategies further reduce infections and quarantines when transmission dynamics are strong. In particular, network-based cohorting inhibits superspreading in classrooms. Cohorting that explicitly minimizes cross-cohort contacts is most effective, but approximation based on chained nominations and classroom division by gender also outperform random cohorting. Every-second-week instruction in-person contains outbreaks more effectively than daily in-person instruction of both cohorts. INTERPRETATION: Cohorting of school classes can curb SARS-CoV-2 outbreaks in the school context. Factoring in out-of-school contacts can achieve a more effective separation of cohorts. Network-based cohorting reduces the risk of outbreaks in schools and can prevent superspreading events. FUNDING: None.