Cargando…
Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin
Understanding the behavior of Candida spp. when exposed to denture disinfectants is essential to optimize their effectiveness. Changes in the virulence factors may cause increased resistance of Candida spp. to disinfectant agents. OBJECTIVE: To evaluate the microbial load, cellular metabolism, hydro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Faculdade De Odontologia De Bauru - USP
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425898/ https://www.ncbi.nlm.nih.gov/pubmed/34495107 http://dx.doi.org/10.1590/1678-7757-2021-0024 |
_version_ | 1783749935359852544 |
---|---|
author | BADARÓ, Mauricio Malheiros BUENO, Frank Lucarini MAKRAKIS, Lais Ranieri ARAÚJO, Camila Borba OLIVEIRA, Viviane de Cássia MACEDO, Ana Paula PARANHOS, Helena de Freitas Oliveira WATANABE, Evandro SILVA-LOVATO, Cláudia Helena |
author_facet | BADARÓ, Mauricio Malheiros BUENO, Frank Lucarini MAKRAKIS, Lais Ranieri ARAÚJO, Camila Borba OLIVEIRA, Viviane de Cássia MACEDO, Ana Paula PARANHOS, Helena de Freitas Oliveira WATANABE, Evandro SILVA-LOVATO, Cláudia Helena |
author_sort | BADARÓ, Mauricio Malheiros |
collection | PubMed |
description | Understanding the behavior of Candida spp. when exposed to denture disinfectants is essential to optimize their effectiveness. Changes in the virulence factors may cause increased resistance of Candida spp. to disinfectant agents. OBJECTIVE: To evaluate the microbial load, cellular metabolism, hydrolytic enzyme production, hyphae formation, live cell and biofilm quantification of Candida albicans, Candida tropicalis and Candida glabrata after exposure to disinfectant solutions. METHODOLOGY: Simple biofilms were grown on heat-polymerized acrylic resin specimens, and divided into groups according to solutions/strains: distilled water (control); 0.25% sodium hypochlorite (NaOCl 0.25% ); 10% Ricinus communis (RC 10%); and 0.5% Chloramine T (CT 0.5%). The virulence factors were evaluated using the CFU count (microbial load), XTT method (cell metabolism), epifluorescence microscopy (biofilm removal and live or dead cells adhered), protease and phospholipase production and hyphae formation. Data were analyzed (α=0.05) by one-way ANOVA/ Tukey post hoc test, Kruskal-Wallis test and Wilcoxon test. RESULTS: NaOCl 0.25% was the most effective solution. CT 0.5% reduced the number of CFUs more than RC 10% and the control. RC 10% was effective only against C. glabrata. RC 10% and CT 0.5% decreased the cellular metabolism of C. albicans and C. glabrata. Enzyme production was not affected. Hyphal growth in the RC 10% and CT 0.5% groups was similar to that of the control. CT 0.5% was better than RC 10% against C. albicans and C. tropicalis when measuring the total amount of biofilm and number of living cells. For C. glabrata, CT 0.5% was equal to RC 10% in the maintenance of living cells; RC 10% was superior for biofilm removal. CONCLUSIONS: The CT 0.5% achieved better results than those of Ricinus communis at 10%, favoring the creation of specific products for dentures. Adjustments in the formulations of RC 10% are necessary due to efficacy against C. glabrata. The NaOCl 0.25% is the most effective and could be suitable for use as a positive control. |
format | Online Article Text |
id | pubmed-8425898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Faculdade De Odontologia De Bauru - USP |
record_format | MEDLINE/PubMed |
spelling | pubmed-84258982021-09-10 Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin BADARÓ, Mauricio Malheiros BUENO, Frank Lucarini MAKRAKIS, Lais Ranieri ARAÚJO, Camila Borba OLIVEIRA, Viviane de Cássia MACEDO, Ana Paula PARANHOS, Helena de Freitas Oliveira WATANABE, Evandro SILVA-LOVATO, Cláudia Helena J Appl Oral Sci Original Article Understanding the behavior of Candida spp. when exposed to denture disinfectants is essential to optimize their effectiveness. Changes in the virulence factors may cause increased resistance of Candida spp. to disinfectant agents. OBJECTIVE: To evaluate the microbial load, cellular metabolism, hydrolytic enzyme production, hyphae formation, live cell and biofilm quantification of Candida albicans, Candida tropicalis and Candida glabrata after exposure to disinfectant solutions. METHODOLOGY: Simple biofilms were grown on heat-polymerized acrylic resin specimens, and divided into groups according to solutions/strains: distilled water (control); 0.25% sodium hypochlorite (NaOCl 0.25% ); 10% Ricinus communis (RC 10%); and 0.5% Chloramine T (CT 0.5%). The virulence factors were evaluated using the CFU count (microbial load), XTT method (cell metabolism), epifluorescence microscopy (biofilm removal and live or dead cells adhered), protease and phospholipase production and hyphae formation. Data were analyzed (α=0.05) by one-way ANOVA/ Tukey post hoc test, Kruskal-Wallis test and Wilcoxon test. RESULTS: NaOCl 0.25% was the most effective solution. CT 0.5% reduced the number of CFUs more than RC 10% and the control. RC 10% was effective only against C. glabrata. RC 10% and CT 0.5% decreased the cellular metabolism of C. albicans and C. glabrata. Enzyme production was not affected. Hyphal growth in the RC 10% and CT 0.5% groups was similar to that of the control. CT 0.5% was better than RC 10% against C. albicans and C. tropicalis when measuring the total amount of biofilm and number of living cells. For C. glabrata, CT 0.5% was equal to RC 10% in the maintenance of living cells; RC 10% was superior for biofilm removal. CONCLUSIONS: The CT 0.5% achieved better results than those of Ricinus communis at 10%, favoring the creation of specific products for dentures. Adjustments in the formulations of RC 10% are necessary due to efficacy against C. glabrata. The NaOCl 0.25% is the most effective and could be suitable for use as a positive control. Faculdade De Odontologia De Bauru - USP 2021-09-03 /pmc/articles/PMC8425898/ /pubmed/34495107 http://dx.doi.org/10.1590/1678-7757-2021-0024 Text en https://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article BADARÓ, Mauricio Malheiros BUENO, Frank Lucarini MAKRAKIS, Lais Ranieri ARAÚJO, Camila Borba OLIVEIRA, Viviane de Cássia MACEDO, Ana Paula PARANHOS, Helena de Freitas Oliveira WATANABE, Evandro SILVA-LOVATO, Cláudia Helena Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin |
title | Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin |
title_full | Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin |
title_fullStr | Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin |
title_full_unstemmed | Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin |
title_short | Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin |
title_sort | action of disinfectant solutions on adaptive capacity and virulence factors of the candida spp. biofilms formed on acrylic resin |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425898/ https://www.ncbi.nlm.nih.gov/pubmed/34495107 http://dx.doi.org/10.1590/1678-7757-2021-0024 |
work_keys_str_mv | AT badaromauriciomalheiros actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT buenofranklucarini actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT makrakislaisranieri actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT araujocamilaborba actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT oliveiravivianedecassia actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT macedoanapaula actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT paranhoshelenadefreitasoliveira actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT watanabeevandro actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin AT silvalovatoclaudiahelena actionofdisinfectantsolutionsonadaptivecapacityandvirulencefactorsofthecandidasppbiofilmsformedonacrylicresin |