Cargando…
Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review
BACKGROUND: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty (total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify the accuracy of current AI- and ML-based application for cognitive support and decision-maki...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426157/ https://www.ncbi.nlm.nih.gov/pubmed/34522738 http://dx.doi.org/10.1016/j.artd.2021.07.012 |
_version_ | 1783749982385340416 |
---|---|
author | Lopez, Cesar D. Gazgalis, Anastasia Boddapati, Venkat Shah, Roshan P. Cooper, H. John Geller, Jeffrey A. |
author_facet | Lopez, Cesar D. Gazgalis, Anastasia Boddapati, Venkat Shah, Roshan P. Cooper, H. John Geller, Jeffrey A. |
author_sort | Lopez, Cesar D. |
collection | PubMed |
description | BACKGROUND: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty (total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify the accuracy of current AI- and ML-based application for cognitive support and decision-making in TJA. METHODS: A comprehensive search of publications was conducted through the EMBASE, Medline, and PubMed databases using relevant keywords to maximize the sensitivity of the search. No limits were placed on level of evidence or timing of the study. Findings were reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Analysis of variance testing with post-hoc Tukey test was applied to compare the area under the curve (AUC) of the models. RESULTS: After application of inclusion and exclusion criteria, 49 studies were included in this review. The application of AI/ML-based models and average AUC is as follows: cost prediction-0.77, LOS and discharges-0.78, readmissions and reoperations-0.66, preoperative patient selection/planning-0.79, adverse events and other postoperative complications-0.84, postoperative pain-0.83, postoperative patient-reported outcomes measures and functional outcome-0.81. Significant variability in model AUC across the different decision support applications was found (P < .001) with the AUC for readmission and reoperation models being significantly lower than that of the other decision support categories. CONCLUSIONS: AI/ML-based applications in TJA continue to expand and have the potential to optimize patient selection and accurately predict postoperative outcomes, complications, and associated costs. On average, the AI/ML models performed best in predicting postoperative complications, pain, and patient-reported outcomes and were less accurate in predicting hospital readmissions and reoperations. |
format | Online Article Text |
id | pubmed-8426157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-84261572021-09-13 Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review Lopez, Cesar D. Gazgalis, Anastasia Boddapati, Venkat Shah, Roshan P. Cooper, H. John Geller, Jeffrey A. Arthroplast Today Original Research BACKGROUND: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty (total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify the accuracy of current AI- and ML-based application for cognitive support and decision-making in TJA. METHODS: A comprehensive search of publications was conducted through the EMBASE, Medline, and PubMed databases using relevant keywords to maximize the sensitivity of the search. No limits were placed on level of evidence or timing of the study. Findings were reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Analysis of variance testing with post-hoc Tukey test was applied to compare the area under the curve (AUC) of the models. RESULTS: After application of inclusion and exclusion criteria, 49 studies were included in this review. The application of AI/ML-based models and average AUC is as follows: cost prediction-0.77, LOS and discharges-0.78, readmissions and reoperations-0.66, preoperative patient selection/planning-0.79, adverse events and other postoperative complications-0.84, postoperative pain-0.83, postoperative patient-reported outcomes measures and functional outcome-0.81. Significant variability in model AUC across the different decision support applications was found (P < .001) with the AUC for readmission and reoperation models being significantly lower than that of the other decision support categories. CONCLUSIONS: AI/ML-based applications in TJA continue to expand and have the potential to optimize patient selection and accurately predict postoperative outcomes, complications, and associated costs. On average, the AI/ML models performed best in predicting postoperative complications, pain, and patient-reported outcomes and were less accurate in predicting hospital readmissions and reoperations. Elsevier 2021-09-03 /pmc/articles/PMC8426157/ /pubmed/34522738 http://dx.doi.org/10.1016/j.artd.2021.07.012 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Lopez, Cesar D. Gazgalis, Anastasia Boddapati, Venkat Shah, Roshan P. Cooper, H. John Geller, Jeffrey A. Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review |
title | Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review |
title_full | Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review |
title_fullStr | Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review |
title_full_unstemmed | Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review |
title_short | Artificial Learning and Machine Learning Decision Guidance Applications in Total Hip and Knee Arthroplasty: A Systematic Review |
title_sort | artificial learning and machine learning decision guidance applications in total hip and knee arthroplasty: a systematic review |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426157/ https://www.ncbi.nlm.nih.gov/pubmed/34522738 http://dx.doi.org/10.1016/j.artd.2021.07.012 |
work_keys_str_mv | AT lopezcesard artificiallearningandmachinelearningdecisionguidanceapplicationsintotalhipandkneearthroplastyasystematicreview AT gazgalisanastasia artificiallearningandmachinelearningdecisionguidanceapplicationsintotalhipandkneearthroplastyasystematicreview AT boddapativenkat artificiallearningandmachinelearningdecisionguidanceapplicationsintotalhipandkneearthroplastyasystematicreview AT shahroshanp artificiallearningandmachinelearningdecisionguidanceapplicationsintotalhipandkneearthroplastyasystematicreview AT cooperhjohn artificiallearningandmachinelearningdecisionguidanceapplicationsintotalhipandkneearthroplastyasystematicreview AT gellerjeffreya artificiallearningandmachinelearningdecisionguidanceapplicationsintotalhipandkneearthroplastyasystematicreview |