Cargando…

Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome

BACKGROUND: We investigate whether deep learning (DL) neural networks can reduce erroneous human “judgment calls” on bedside echocardiograms and help distinguish Takotsubo syndrome (TTS) from anterior wall ST segment elevation myocardial infarction (STEMI). METHODS: We developed a single-channel (DC...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaman, Fahim, Ponnapureddy, Rakesh, Wang, Yi Grace, Chang, Amanda, Cadaret, Linda M, Abdelhamid, Ahmed, Roy, Shubha D, Makan, Majesh, Zhou, Ruihai, Jayanna, Manju B, Gnall, Eric, Dai, Xuming, Singh, Avneet, Zheng, Jingsheng, Boppana, Venkata S, Wang, Feng, Singh, Pahul, Wu, Xiaodong, Liu, Kan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426197/
https://www.ncbi.nlm.nih.gov/pubmed/34522872
http://dx.doi.org/10.1016/j.eclinm.2021.101115
_version_ 1783749991210156032
author Zaman, Fahim
Ponnapureddy, Rakesh
Wang, Yi Grace
Chang, Amanda
Cadaret, Linda M
Abdelhamid, Ahmed
Roy, Shubha D
Makan, Majesh
Zhou, Ruihai
Jayanna, Manju B
Gnall, Eric
Dai, Xuming
Singh, Avneet
Zheng, Jingsheng
Boppana, Venkata S
Wang, Feng
Singh, Pahul
Wu, Xiaodong
Liu, Kan
author_facet Zaman, Fahim
Ponnapureddy, Rakesh
Wang, Yi Grace
Chang, Amanda
Cadaret, Linda M
Abdelhamid, Ahmed
Roy, Shubha D
Makan, Majesh
Zhou, Ruihai
Jayanna, Manju B
Gnall, Eric
Dai, Xuming
Singh, Avneet
Zheng, Jingsheng
Boppana, Venkata S
Wang, Feng
Singh, Pahul
Wu, Xiaodong
Liu, Kan
author_sort Zaman, Fahim
collection PubMed
description BACKGROUND: We investigate whether deep learning (DL) neural networks can reduce erroneous human “judgment calls” on bedside echocardiograms and help distinguish Takotsubo syndrome (TTS) from anterior wall ST segment elevation myocardial infarction (STEMI). METHODS: We developed a single-channel (DCNN[2D SCI]), a multi-channel (DCNN[2D MCI]), and a 3-dimensional (DCNN[2D+t]) deep convolution neural network, and a recurrent neural network (RNN) based on 17,280 still-frame images and 540 videos from 2-dimensional echocardiograms in 10 years (1 January 2008 to 1 January 2018) retrospective cohort in University of Iowa (UI) and eight other medical centers. Echocardiograms from 450 UI patients were randomly divided into training and testing sets for internal training, testing, and model construction. Echocardiograms of 90 patients from the other medical centers were used for external validation to evaluate the model generalizability. A total of 49 board-certified human readers performed human-side classification on the same echocardiography dataset to compare the diagnostic performance and help data visualization. FINDINGS: The DCNN (2D SCI), DCNN (2D MCI), DCNN(2D+t), and RNN models established based on UI dataset for TTS versus STEMI prediction showed mean diagnostic accuracy 73%, 75%, 80%, and 75% respectively, and mean diagnostic accuracy of 74%, 74%, 77%, and 73%, respectively, on the external validation. DCNN(2D+t) (area under the curve [AUC] 0·787 vs. 0·699, P = 0·015) and RNN models (AUC 0·774 vs. 0·699, P = 0·033) outperformed human readers in differentiating TTS and STEMI by reducing human erroneous judgement calls on TTS. INTERPRETATION: Spatio-temporal hybrid DL neural networks reduce erroneous human “judgement calls” in distinguishing TTS from anterior wall STEMI based on bedside echocardiographic videos. FUNDING: University of Iowa Obermann Center for Advanced Studies Interdisciplinary Research Grant, and Institute for Clinical and Translational Science Grant. National Institutes of Health Award (1R01EB025018–01).
format Online
Article
Text
id pubmed-8426197
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84261972021-09-13 Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome Zaman, Fahim Ponnapureddy, Rakesh Wang, Yi Grace Chang, Amanda Cadaret, Linda M Abdelhamid, Ahmed Roy, Shubha D Makan, Majesh Zhou, Ruihai Jayanna, Manju B Gnall, Eric Dai, Xuming Singh, Avneet Zheng, Jingsheng Boppana, Venkata S Wang, Feng Singh, Pahul Wu, Xiaodong Liu, Kan EClinicalMedicine Research Paper BACKGROUND: We investigate whether deep learning (DL) neural networks can reduce erroneous human “judgment calls” on bedside echocardiograms and help distinguish Takotsubo syndrome (TTS) from anterior wall ST segment elevation myocardial infarction (STEMI). METHODS: We developed a single-channel (DCNN[2D SCI]), a multi-channel (DCNN[2D MCI]), and a 3-dimensional (DCNN[2D+t]) deep convolution neural network, and a recurrent neural network (RNN) based on 17,280 still-frame images and 540 videos from 2-dimensional echocardiograms in 10 years (1 January 2008 to 1 January 2018) retrospective cohort in University of Iowa (UI) and eight other medical centers. Echocardiograms from 450 UI patients were randomly divided into training and testing sets for internal training, testing, and model construction. Echocardiograms of 90 patients from the other medical centers were used for external validation to evaluate the model generalizability. A total of 49 board-certified human readers performed human-side classification on the same echocardiography dataset to compare the diagnostic performance and help data visualization. FINDINGS: The DCNN (2D SCI), DCNN (2D MCI), DCNN(2D+t), and RNN models established based on UI dataset for TTS versus STEMI prediction showed mean diagnostic accuracy 73%, 75%, 80%, and 75% respectively, and mean diagnostic accuracy of 74%, 74%, 77%, and 73%, respectively, on the external validation. DCNN(2D+t) (area under the curve [AUC] 0·787 vs. 0·699, P = 0·015) and RNN models (AUC 0·774 vs. 0·699, P = 0·033) outperformed human readers in differentiating TTS and STEMI by reducing human erroneous judgement calls on TTS. INTERPRETATION: Spatio-temporal hybrid DL neural networks reduce erroneous human “judgement calls” in distinguishing TTS from anterior wall STEMI based on bedside echocardiographic videos. FUNDING: University of Iowa Obermann Center for Advanced Studies Interdisciplinary Research Grant, and Institute for Clinical and Translational Science Grant. National Institutes of Health Award (1R01EB025018–01). Elsevier 2021-09-04 /pmc/articles/PMC8426197/ /pubmed/34522872 http://dx.doi.org/10.1016/j.eclinm.2021.101115 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Zaman, Fahim
Ponnapureddy, Rakesh
Wang, Yi Grace
Chang, Amanda
Cadaret, Linda M
Abdelhamid, Ahmed
Roy, Shubha D
Makan, Majesh
Zhou, Ruihai
Jayanna, Manju B
Gnall, Eric
Dai, Xuming
Singh, Avneet
Zheng, Jingsheng
Boppana, Venkata S
Wang, Feng
Singh, Pahul
Wu, Xiaodong
Liu, Kan
Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome
title Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome
title_full Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome
title_fullStr Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome
title_full_unstemmed Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome
title_short Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of Takotsubo syndrome
title_sort spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of takotsubo syndrome
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426197/
https://www.ncbi.nlm.nih.gov/pubmed/34522872
http://dx.doi.org/10.1016/j.eclinm.2021.101115
work_keys_str_mv AT zamanfahim spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT ponnapureddyrakesh spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT wangyigrace spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT changamanda spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT cadaretlindam spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT abdelhamidahmed spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT royshubhad spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT makanmajesh spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT zhouruihai spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT jayannamanjub spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT gnalleric spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT daixuming spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT singhavneet spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT zhengjingsheng spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT boppanavenkatas spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT wangfeng spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT singhpahul spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT wuxiaodong spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome
AT liukan spatiotemporalhybridneuralnetworksreduceerroneoushumanjudgementcallsinthediagnosisoftakotsubosyndrome